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SUMMARY

This paper describes analytical and simulation models of the population
dynamics of transposable elements in randomly mating populations. The
models assume a finite number of chromosomal sites that are occupable
by members of a given family of elements. Element frequencies can
change as a result of replicative transposition, loss of elements from
occupied sites, selection on copy number per individual, and genetic drift.
It is shown that, in an infinite population, an equilibrium can be set up
such that not all sites in all individuals are occupied, allowing variation
between individuals in both copy number and identity of occupied sites,
as has been observed for several element families in Drosophila
melanogaster. Such an equilibrium requires either regulation of
transposition rate in response to copy number per genome, a sufficiently
strongly downwardly curved dependence of individual fitness on copy
number, or both. The probability distributions of element frequencies,
generated by the effects of finite population size, are derived on the
assumption of independence between different loci, and compared with
simulation results. Despite some discrepancies due to violation of the
independence assumption, the general pattern seen in the simulations
agrees quite well with theory.

Data from Drosophila population studies are compared with the
theoretical models, and methods of estimating the relevant parameters
are discussed.

1. INTRODUCTION

It is now well established that the genomes of eukaryotes consist to a significant
extent of families of dispersed, repeated sequences of DNA (middle repetitive
DNA). The structure of members of these families is similar to that of the
well-characterized transposable genetic elements of prokaryotes (Kleckner, 1981),
and it seems increasingly clear that they are capable of replication and transposition
to new sites within the genome, just like the prokaryote transposons and insertion
sequencies (Doolittle, 1982; Finnegan, Will, Bayev, Bowcock & Brown, 1982).
Although in most cases there is only indirect evidence for mobility of middle
repetitive DNA, there is direct genetic evidence for transposable elements in both
Drosophila (Green, 1980) and maize (McClintock, 1956). Furthermore, it has been
shown that the phenomenon of hybrid dysgenesis in D. melanogaster (Kidwell,
Kidwell & Sved, 1977; Engels, 1981) is due to the mobilization and integration
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2 B. CHARLESWORTH AND DEBORAH CHARLESWORTH

at new chromosomal sites of a transposable element, the P factor (Rubin, Kidwell
& Bingham, 1982; Bingham, Kidwell & Rubin, 1982).

The likelihood that middle repetitive DNA consists of families of transposable
elements generated the 'selfish DNA' hypothesis of Doolittle & Sapienza (1980)
and Orgel & Crick (1980), which asserts that the maintenance and distribution
of such DNA in natural populations can be understood in terms of the selective
advantage to the elements themselves of their power of multiplication within the
genome, and not to any advantages to the individuals who carry them. The known
role of transposable elements in bacteria, yeast and Drosophila in inducing
mutations as a result of insertion into new sites suggests that they are likely to
have an adverse effect on individual fitness, if any. A stable distribution of number
of copies per individual of a given class of element could be set up in a sexual
population as a result of a balance between increase in copy number by replicative
transposition, and elimination by selection (Brookfield, 1982, 1983; Charlesworth,
1983). Another possibility for maintaining stable copy numbers is that replication
is regulated, so that the transposition rate per element declines with the number
of elements of the same family present in the same genome. There is evidence for
such regulation in prokaryotes (Kleckner, 1981; Kitts, Lamond & Sherratt, 1982;
Reed, Shibuya & Steitz, 1982), and the properties of the P f&ulur system in D.
melanogaster suggests that this can occur in eukaryotes as well.

These considerations indicate that transposable elements may be involved in a
novel class of population process. Despite the extensive verbal discussions of selfish
DNA (reviewed by Doolittle, 1982, and Dover, 1982), there have been few attempts
to provide well-worked out population genetics models of their evolutionary
dynamics. In view of the possible role of population studies in testing the
hypotheses concerning the significance of transposable elements, it seems important
to develop such models. Various types of model are described by Ohta (1981,1983),
Ohta & Kimura (1981), Brookfield (1982, 1983), Hickey (1982), Barrett (1982),
Langley, Brookfield & Kaplan (1983) and Kaplan & Brookfield (19836).

The purpose of this paper is to present some models of the population genetics
of a transposable element in diploid, sexually reproducing populations mating at
random, in the hope of generating predictions that could be tested by comparison
with the distributional properties of such elements in natural populations. Our
models assume that increase in the number of copies of the element occurs by
means of transposition of replicates of pre-existing elements to new genomic sites.
We also allow for the possibility that an element may be lost from a site,
independently of transposition. There is good evidence for these processes in
prokaryotes (Kleckner, 1981), but the situation in eukaryotes is less clear. We
consider both regulated transposition and selection against individuals carrying
elements, by means of analytical models and computer simulations.

2. THE COMPUTER MODEL

Two independently segregating chromosome pairs were assumed, each with up
to 31 sites at which the transposable element could integrate; most of our
simulations assumed 31 sites per chromosome. Recombination between loci on the
same chromosome was modelled by the method described below. Each of the four
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chromosomes in a genome was stored as one computer word, using zeros to denote
non-occupied sites, and l's for loci at which the element had integrated.

The initial population for each run was set up by specifying an expected number
of copies of the element per individual (usually 10). The number of individuals in
the population (N) was also specified. Each of the two gametes constituting an
individual was set up locus by locus, using the appropriate probability of
occupation of a site derived from the total number of loci and the specified expected
number of elements per individual, and choosing a random number to decide
whether or not a given locus was occupied. This initial population formed the basis
for a single run, with the following sequence of events, which assumes that the
starting population consists of adult individuals about to reproduce.

Two parent individuals were taken at random from the initial set. Each parent
in turn was used to generate a gamete containing two non-homologous chromosomes.
This step involves modelling the recombination process within each chromosome.
The number of crossover events for a chromosome was determined by a random
number, using a Poisson distribution whose mean was the total map distance
between the two extreme loci. This distance was usually 90 map units, corresponding
to a recombination frequency of 003 between adjacent loci. Their location was
determined by random numbers, assuming a uniform distribution of crossovers
along the chromosome. The reciprocal recombinant chromosomes were then
generated from the appropriate pair of homologous chromosomes of the parent in
question, using the usual masking procedure (Franklin & Lewontin, 1970), and one
of them was chosen at random for inclusion in the gamete. When both parents had
generated gametes by this process, the gametes were combined to form a zygote.

In runs where selection was being modelled, the fitness of the zygote was
assumed to be a function of the number of elements in its genome (see Section 4(i)
for details). The number of elements was therefore counted for the zygote in
question, and a random number was generated in order to decide whether or not
to accept it as viable. The whole procedure of generating new zygotes was repeated
from the beginning until N viable zygotes had been produced.

Finally, the population was subjected to processes of transposition and loss of
elements. The probability of transposition of a given element was assumed to be
a decreasing function of n, the number of elements in the genome in which the
element is situated (see Section 3 (i) for details). The probability of loss was treated
as constant. The probability of transposition or loss per element was multiplied
by n for the individual in question, and the result gave the mean of a Poisson
distribution for the total number of transposition or loss events. In order to save
computer time, low probabilities of loss or transposition were assumed, so that the
Poisson distributions could be approximated by their first two terms (i.e. at most
one of each type of event occurred in a given individual in a given generation).

Loss of an element from a locus of an individual was modelled by first choosing
a random number to decide whether an element was to be lost from that individual,
or whether all elements were to be retained. If an element was to be lost, the site
of loss was chosen at random from a list of all occupied loci for the given individual,
assuming an equal probability of loss for each occupied locus. The appropriate bit
of the computer words specifying the genome in question was then altered.
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4 B. CHARLES WORTH AND DEBORAH CHARLES WORTH

The occurrence of a transposition event in an individual was determined in the
same way as for loss events. The process of transposition was assumed to involve
the appearance of the element at a site that was previously unoccupied, without
any simultaneous loss of the element from occupied sites. In order to decide at
which site a new element would appear, we chose a locus at random from the entire
genome; if unoccupied, it was altered to the occupied state, but if it proved to be
occupied, another site was chosen at random, and so on until an unoccupied site
was found.

When all N zygotes had undergone transposition and loss, the original individuals
present at the start of the generation were discarded and replaced by their progeny.
The entire generation cycle of events was repeated for a number of generations
(usually 1000). Replicate runs of the same parameter set were performed using the
final random number of the preceding run for determining the state of the first
locus of the first individual in the initial population.

3. REGULATED TRANSPOSITION

In this section, we shall develop some analytical models for the case with no
selection, but when the probability of transposition of an element in a diploid
genome containing n elements is a decreasing function un of n. The probability of
loss of an element is assumed to be a constant, v. (Parallel results can be obtained
for the case when v is an increasing function of n, but we shall not pursue this
further.) The analytical models are then compared with simulation results.
Throughout the rest of the paper, we assume that there is a finite number of
chromosomal sites that may be occupied by an element, which we write as T for
a diploid individual. The number of occupable chromosomal loci is thus T/2, and
these will be treated in the same way as conventional gene loci in the population
genetics models.

(i) Infinite population size

Let the frequency of the element at the ith locus be xt, and let n be the mean
number of elements per individual in the population. We have

n = 2'Lxi, (1)
i

where the summation is taken over all occupable loci. The change per generation
is n is given by

An = E{nun} — nv, (2)

where the expectation is taken over all individuals in the population. Expanding
this around n, we can write

| [ ^ ^ ] ,3)
where Vn is the variance in copy number between individuals.
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We have (Bulmer, 1980, p. 158)

(4)

where <x| is the variance in xt between loci, and Dy is the coefficient of linkage
disequilibrium between loci i and j . If linkage disequilibrium effects are small, as
seems likely unless linkage is very tight, the terms in Dy can be ignored. (The
validity of this is examined in Section 3(iv) below.) Furthermore, in an infinite
population, the processes of transposition and loss will soon equalize the frequencies
of the element at all loci, so that <x%—>0 (see Appendix 1). Copy number per
individual will then follow a binomial distribution with mean n and variance
n(l — n/T), and equation (3) becomes

Provided that transposition is not too strongly regulated, the second term on
the right-hand side of equation (5) may be neglected in most cases, n will then tend
to an equilibrium value n given by the approximate expression

uA = v. (6a)

In the simulation work, we used the function un = uo/(l + kn). The validity of the
above approximations then depends on k being small (<̂  1), and the solution of
equation (6a) is

n = (uo-v)/kv. (66)

(ii) Finite population size: an analytical model

Consider a population of N breeding individuals, of effective size Ne. In such
a population, the assumption of equal frequencies of the element at all loci will
no longer hold, nor will the mean number of copies per individual stabilize at the
level corresponding to the infinite population case. If linkage disequilibrium effects
are ignored, however, the change in frequency per generation of the element can
be determined for an individual locus i. For simplicity, the subscript i will be
dropped from the frequency of the element at locus i, so that x will be used instead
of xt.

If the mean number of copies per individual in the present generation is n, the
mean number of transposition events is, by the above results, approximately nun.
New elements can insert themselves only at unoccupied sites, to which locus i
contributes a fraction 2(1— x)/(T—n). The mean increase in copy number at this
locus is thus approximately 2nun(l— x)/(T—n), and the change in x due to
transposition and loss is given by

Ax % /%(1— x) — vx, (7)

where
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6 B. CHARLESWORTH AND DEBORAH CHARLESWORTH

As a result of sampling, there will be a probability distribution of x, whose
density function at time t may be written as <f>(x, t). This will obey the usual
diffusion approximation, provided that fin, v and l/Ne are sufficiently small. Hence

d(<f>Mgx)
=

dt 2 a*2 dx
where VSx = x(l —x)/2Ne and MSx are the variance and expectation of the change
in a; per generation (e.g. Crow & Kimura, 1970, p. 372). From equation (7) the latter
is given by

MtxmE{jtK}(l-x)-vx, (9)

where the expectation is taken over the probability distribution of n. This assumes
independence between the distributions for different loci.

In order to utilize equations (8) and (9), it is obviously necessary to evaluate
E{jin}. This can be done if we assume that the probability distributions for all loci
tend to a steady-state, such that the expectation of n approximates the infinite-
population equilibrium value n given by equations (5) and (6). Formally, this is
impossible, since the state of loss of the element from all loci of each member of
the population is the absorbing boundary of the process. But in practice the chance
of loss in a given generation of all copies from a reasonably large population with
even a moderate value of n is a very low (approximately exp —nNe). With n = 20
and Ne = 50, for example, this probability is about 10~434. Provided a state with
a sufficiently high value of E{n} is approached, the rate of absorption into the state
of loss of all copies will be negligible in practice. Computer simulations show that
there is indeed fairly rapid convergence to an approximate steady-state in which
E{n} K n. (See Section 3(iv) for details.)

For sufficiently large t, we can therefore write

where &\ and &% are the steady-state variances in mean copy number and element
frequency respectively. Provided that &% is small and n is small compared with
T, only the /iA term need be employed.

It is therefore legitimate to solve equation (8) for the steady-state probability
distribution <p(x), satisfying d$/dt = 0, by substituting /iA for E{jin) is equation (9),
which thereby becomes identical in form with the usual equation for a single locus
with reversible mutation between two alleles (Crow & Kimura, 1970, p. 442). <f>{x)
therefore follows a beta distribution

where a = lNe/iA and /? = 4:Nev. The mean and variance of this distribution are

x = a./(a. + f1) = n/T (12a)

and
<7| = £(!-£)/(!+a+/?). (126)
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(iii) Methods of comparison with simulation results and data

If the assumption of independence of the distributions between different loci is
correct, then <j>(x) can be interpreted either as the distribution of frequencies among
different loci in the same genome, or as the distribution at a single locus over
separate populations. Data or simulation results on the frequencies of the element
at different sites can then be pooled over loci and populations to provide a
distribution of frequencies to compare with <p(x). The probability that a locus has
a frequency in the range x1 to x2 (0 < x1 < x2 < 1) is given by integrating over this
range. The proportions of loci at which the element is lost or fixed are given by
the formulae (Crow & Kimura, 1970, p. 441)

[1/2N
loss: Po = <j>{x)dx (13)

Jo

fixation: P1 = \ <j>(x)dx.
Jl-(1/2N)

(14)

(These formulae are not necessarily accurate for small population sizes, and more
adequate approximations to Po and P1 can be obtained [Ewens, 1979, p. 158].)

Since we do not know the total number of occupable sites in the genome for any
family of transposable elements in eukaryotes, data from populations must be
restricted to information on frequencies of the element at loci where it has been
identified as occurring at least once in the sample. The observed distribution of
frequencies can therefore be compared with the distribution conditioned on
non-loss, i.e.

(15)

An alternative method has been suggested by Langley, Brookfield & Kaplan
(1983) for the case when T is very large, using an analogy with the infinite-alleles
model of standard neutral mutation theory (Crow & Kimura, 1970, p. 455). Their
method can be placed in the present framework as follows. The expected number
of loci in a genome with the element in the frequency range x to x + dx can be
written

<b(x)dx = \T<f>{x)dx. (16)

As T -»oo, a -»0 in equation (11), and F(a) -» a"1. For a large number of occupable
sites, therefore, we have (using the fact that Tot. -* 4NeuAn = 4:Nevn = fin)

1(l-xf-1. (17)
This is similar in form to equation (4) of Langley et al. (1983).

(iv) Simulation results

The adequacy of the approximate theory developed above was checked by the
simulation procedure of Section 2. All the runs described here were done with a
system of two independent chromosomes each with 31 loci (T = 124). In most
cases, the recombination fraction between adjacent loci was 003. This provides
an approximation to what would be expected for sites distributed uniformly along
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the major autosomes ofDrosophila melanogaster, although the total number of sites
per chromosome is probably unrealistically small. Each run was started by
generating independent individuals with an expected number of ten copies of the
element, using the procedures described in Section 2. The random sampling method
used to form each new generation ensures that Ne = N. Each run was terminated
after 1000 generations, or after loss of all copies of the element from the population,
if this happened first.

30

20

10

E

= 50

500 1000
Generations

Fig. 1. Changes in time of the mean copy number (n) of ten simulated populations
for parameter sets 1 and 2 of Table 1 (M0 = 001, v = 0005, k = 005, and N = 10 and
50 respectively). The arrows indicate the means of n for those populations that have
not lost all copies of the element. (The expected value is 20 in both cases.)

As shown in Fig. 1, even populations of moderate size tend to move fairly quickly
towards a state in which the expected copy number per individual approaches
that predicted by equations (6), with only the occasional case of loss of all copies
from the population. Loss will obviously be more frequent, the lower the initial
mean copy number, but the assumption of convergence to a steady-state value of
expected copy number close to n seems to be justified for those populations that
survive early loss (see also Table 1).
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The results of simulations done with four different parameters set are shown
in Table 1, where cases of loss have been discarded. Fig. 2 displays histograms of
the conditional distributions of element frequency for these parameter sets. The
distributions of element frequencies were compiled by pooling the distribution of
frequencies across loci at generation 1000 of each run. The estimates of mean copy

Table 1. Parameter sets used in the computer simulations with regulated
transposition, and a summary of the results

Parameter set
k
N

Number of runs

Mean copy number per individual
Theoretical
Simulated

Variance in element frequency
between loci (cr|)
Theoretical
Simulated

Fraction of loci with
zero frequency (Po)
Theoretical
Simulated

Variance in copy number
between individuals within
populations (Vn)
Theoretical
Simulated

1
005
10

(a = 0038,
fi = 0-2)

17

20
18-59**

01092
01041

0-7596
0-7666

2-789
2192

2
005
50

(a = 0-192,
/ ? = ! )

23

20
19-59**

00617
00655

0-4125
0-4390*

8-309
9-211*

3
005
100

(a = 0-385,
/? = 2)

13

20
1901**

00400
00438

01802
0-2246**

10-674
10-521

4
0-0838

50
(a = 0106,

ft=\)
20

11-93
1116**

00413
00421

0-6124
0-6548**

5-522
5042

uB = 0-01 and v = 0-005 in each case, and un = uo/(l + kn).
* and ** indicate deviations from the theoretical values at p < 0-05 and p < 0-01 respectively.

number per individual, a%, and Po were obtained directly from these distributions,
and compared with the formulae derived above. The existence of any systematic
linkage disequilibrium effects (i.e. effects consistent across different runs) was
tested by comparing the mean over runs of Vn (the variance between individuals
in copy number) at generation 1000 with the expected value given by equation
(4) on the hypothesis of no linkage disequilibrium, n(l—n/T) — a% (T+l), using
the simulated values of n and a\.

Table 1 shows that simulated and theoretical values are close for mean copy
number per individual and o~%, although in every case the expected values of n are
significantly higher than the observed. Similarly, the theoretical values of Po tend
to be somewhat higher than the simulated. This may partly reflect an inadequacy
in the approximations involved in equation (13), but more probably is due to a
movement of the distribution towards the absorbing boundary (see Section 5 (iv)).
The simulated conditional distributions in Fig. 2 show good agreement with theory,
with no significant discrepancies except possibly for the case of N = 10, where the
diffusion approximation is expected to be unreliable anyway.
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The comparatively good agreement between simulated and theoretical values
of these measures suggest that the assumption of no linkage disequilibrium and
independent distributions for different loci is valid. This is largely confirmed by
the comparison of simulated and theroetical values of Fn except for the case of
N = 10. Linkage effects were also tested for by simulations of parameter set 2 with

0-5

0-4

0-3

0-2

0 1

I
tu 0-5

0-4

0-3

0-2

01
I

o 0-5 0-5

Element frequency

Fig. 2. Histograms of the conditional distributions of element frequencies for the
parameter sets of Table 1 (identified by the numbers above each histogram). Ten per
cent intervals of element frequency were used. The clear columns are the theoretical
frequencies and the shaded columns are the frequencies obtained in the simulations.

a recombination fraction of 0003 between adjacent loci. Ten runs were carried out;
the simulated mean copy number was 1499 instead of the expected 20, <r| was
00548 compared with an expected 00617, and Po was 05710 compared with the
expected 0-4125. The differences in mean and Po are highly significant; the
difference in variance has p < 0-05. The conditional distribution of copy number
does not differ significantly from the expected, however, with f̂9 of 2529
(p < 010). This indicates that the main effect of close linkage is to increase the
probability of loss of copies. There is no evidence that close linkage causes any
systematic linkage disequilibrium (simulated and theoretical values of Vn were
6350 and 6328 respectively). Evidence for some lack of independence of the
distributions at different loci is presented in Section 5(iv), however.
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4. TRANSPOSITION AND SELECTION

In this Section we analyse models in which selection against individuals carrying
the transposable elements opposes its spread. We assume that the probabilities of
both transposition and loss are constants (u and v), independent of copy number.
The fitness of an individual carrying n copies is assumed to be a decreasing function
of n, wn. Otherwise, the notation and assumptions are the same as in Section 3.
We first consider the case of an infinitely large population, and then examine the
properties of the distribution of element frequencies in a finite population.

(i) Infinite population size

Combining equation (7) and Section 3(ii) with standard selection theory, and
assuming no linkage disequilibrium, we obtain the following equation for the
change in element frequency at a given locus i.

where w is the mean fitness of the population, E(wn). Approximating w by wn and
noting that dn/dxi = 2, we obtain

8 In W un( 1 — x,)

±f-vxi. (186)
If element frequencies have the same value, x, at all loci, as would be expected
to be true eventually in an infinite population (see Appendix 1 for the proof of this),
then n = Tx and equation (186) becomes

Ax = x(l-x)dllt™n+x(u-v), (19a)
on

and

•v). (196)

The direction of change in n is given by the sign of

u-v-f(n) (20a)
where

*•>-(-?)!
(206)

dn

(T large). (20c)

An equilibrium n in mean copy number therefore exists when f(n) = 0, subject to
the constraint 0 < n < T. For mean copy number to increase from zero, we require
f{0) <u — v. It follows that 62 In wn/dn2 < 0 is necessary for there to be a
biologically meaningful value of n, in addition to the condition on/(0). Such an
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equilibrium is locally stable by the usual criteria when

For large T, this reduces to

8?i2 T dn
(21a)

(216)

T= 124

80r

60

20
,= 20 \ f = l - 5 /= 1-3

200

150

100

t=l-2
50

10

1=20 t= 1

15 10 15

•s(XlO-*)

Fig. 3. Equilibrium values of mean copy number (A) for an infinite population, with
the fitness function wn = 1 —an1. The left-hand graphs are for the case with T = 124
(used in the computer simulations), and the right-hand graphs for T = 500. u — v is
O0025 in both cases. The asymptotes of the curves correspond to the s values below
which saturation of all T sites occurs for the given value of t.

These results imply that fitness must fall off more steeply with n than does a
multiplicative function wn = (1 — s)n corresponding to independent effects s of each
element on fitness. This conclusion has also been reached by Brookfield (1983)
using a different method. Too fast a rate of fall-off could yield a limit cycle about
n rather than a stable equilibrium, but this possibility seems somewhat unlikely.
It is theoretically possible that a linear fitness function wn = \—ns could yield a
stable equilibrium in n. The equilibrium copy number with linearity is

n
If u—v—s I
5\u—V— 1/T\ < u — v). (22)

This requires T > I/u — v, which means a very large number of occupable sites,
in view of the probable low values of u and v. Furthermore, the value of s must
be closely adjusted to the other parameters in order to obtain a realistic value of
n. A linear fitness function thus seems unlikely; a more strongly convex function

https://doi.org/10.1017/S0016672300021455 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300021455


The population dynamics of transposable elements 13

of n is less tightly constrained. In our simulation work we used functions of the
form

wn=l-snt. (23)

Fig. 3 illustrates the dependence of n on s, t, and u — v with this model.

(ii) Finite population size

Selection with finite population size can be studied in much the same way as
for regulated transposition (Section 3 (ii)). There is, however, the complication
that it is no longer true that the expected value of n is usually close to n for the
infinite population case, given by equation (20a). We denote the expected value of
n by w*, and write

Qlnw
dn*

(24)

Using this in equation (186), it follows from standard theory (Crow & Kimura, 1970,
p. 442) that the steady-state distribution of element frequency is given
approximately by

1(l-x)<1-1, (25a)

C = T{a + B)IT(a)T(B)\i+^y—^ - - J- - \, (25b)
t T j ! ( + / ? + j l ) ( + / ? + j 2 ) ( + / ? ) J '

where a = 4:Neun*/(T—n*) and B = ANev.
The expectation of this distribution is x = n*/T, which is given by the equation

(26)

The value of x (and hence n*, C, etc.) can be obtained by eliminating C between
equations (256) and (26), and iterating the resulting expression in x.

The variance in element frequency, &%, can be obtained by the method of Kimura
& Ohta (1971, p. 185) as

(27)

If Ne is sufficiently large in comparison with the force of selection that most
values of x are close to x, equation (186) can be linearized about x. With large T,
so that x is close to zero, the linearized equation is approximately

, (28)

where — sA is the derivative of In wn at n, n being the equilibrium solution of
equation (20 c). The steady-state distribution is approximated by a beta distribution
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as in equation (11), where a is now lNeux/(l —x) and ft = 4Ne(v + sA) (x = n/T).
This approximation is probably adequate for most natural populations, where Ne

is large, especially when migration is taken into account (see Section 5(iii)).

(iii) Simulation results

The distribution of equations (25) was compared with the results of computer
simulations, using the selection model of equation (23) with s = 0-001 and t = 1-5,

Table 2. Simulation results with selection

N = 50 N=250

Linkage
Number of runs
Mean copy number per individual

Theoretical
Simulated

Variance in element frequency
between loci (<J|)
Theoretical
Simulated

Fraction of loci with zero
frequency (Po)
Theoretical
Simulated

Variance in copy number between
individuals within populations
(Vn)
Theoretical
Simulated

Loose

10

29-50
18-54**

00587
0-0487**

01012
0-3371**

9-679
8-872

Tight

10

29-50
17-30**

00587
0-0481**

01012
0-3613**

10-345
8-660**

Loose

10

15-39
11-64**

00096
0-0074**

00034
00500**

9-623
9-716

Tight

5

15-39
11-47**

00096
0-0084

00034
00419**

9-359
9020

u — 0-01, v = 0-005 and wn = 1-0001 nlb in each case. Loose and tight linkage correspond to
map lengths of 90 and 9 units respectively.

and with u = 001, v = 0005 and T = 124. In an infinite population, this model
applied to equations (20) gives an equilibrium mean copy number per individual
of 12-56, corresponding to an element frequency per locus of 0-1013. The expected
values of mean copy number and element frequency (n* and x) were obtained from
numerical solution of equations (256) and (26). The simulations were carried out
with recombination fractions of 003 and 0003 between adjacent loci ('loose' and
't ight ' linkage, respectively), with population sizes of 50 and 250. The results are
summarized in Table 2. Fig. 4 displays the theoretical and simulated conditional
distributions with loose linkage; the simulated distributions with tight linkage are
very similar to those with loose linkage.

I t will be seen that there is substantial disagreement between the theoretical and
simulated distributions, even with the larger population size. The main source of
this disagreement lies in the much greater frequency of the zero-frequency class
in the simulated, compared with the theoretical distributions. Fig. 4 shows that
the simulated conditional distributions are of similar form to the theoretical ones,
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Fig. 4. Conditional distributions of element frequencies for the parameter sets of
Table 2 with loose linkage. Other details as for Fig. 2.

although they tend to show an excess at the left-hand end of the distribution. This
tendency is slightly but significantly exaggerated with tight linkage with N = 50,
but not with N = 250.

(iv) Linkage disequilibrium

At first sight, linkage disequilibrium generated by selection provides an obvious
explanation for the discrepancies between the simulations and theoretical expec-
tations, which are much more marked than in the case of no selection described
in Section 3(iv). Several lines of evidence rule this explanation out, however. In
the first place, there is little effect of tighter linkage on the goodness of fit to the
theoretical distribution. Similarly, reducing the intensity of selection does not
appreciably improve goodness of fit, as was shown by a set of runs with s = 00005,
u = 0005, v = 00025, N = 250 and loose linkage. Furthermore, of the 4 cases
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shown in Table 2, only that with N = 50 and tight linkage yields a significant result
on the test for linkage disequilibrium based on between-individual variance in copy
number, Vn. The combined x2 over all 4 cases for the comparison of Vn with its
expectation with no linkage disequilibrium is 5302 for 5548 D.F. (p < 002),
suggesting some negative linkage disequilibrium (smaller Vn than expected). Such
negative linkage disequilibrium is expected from the fact that copy number per
individual can be regarded as a quantitative character (with heritability of one)
under directional selection (cf. Bulmer, 1980, p. 166). As shown in Appendix 2,
however, the degree of linkage disequilibrium generated by the rather weak
selection employed in the simulations is very small, even for adjacent loci.

5. DISCUSSION

(i) Maintenance of a stable copy number

The results derived in Sections 3 (i) and 4 (i) yield conditions for the maintenance
of a stable mean number of copies per individual of a transposable element, such
that not all possible genomic sites are occupied, resulting in variation between
individuals in both copy number and identity of occupied sites. Such variation has
been observed for several families of elements in D. melanogaster (Ananiev et al.
1978; Strobel, Dunsmuir & Rubin, 1979; Young, 1979; Ilyin et al. 1980; Pierce
& Lucchesi, 1981; Langley & Montgomery, 1983). But it is important to note that
these conditions may not necessarily be satisfied if the pressure of selection against
individuals carrying the element, the degree of regulation of transposition rate,
or the total number of occupable sites in a diploid genome (T), are too small. Under
such circumstances, all available sites in all individuals may become saturated with
the element, removing any possibility for variation. Different families of elements
within the same species, or the same family in different species, might well behave
differently with respect to the level of saturation of occupable sites (cf. Fig. 3) and
to mean copy numbers, as a result of differences in these parameters. Orgel &
Crick (1980) have discussed ways in which the strength of selection could vary with
life-history.

In the case of selection without regulation of transposition rate, the results of
Section 4 (i) indicate that individual fitness must be sufficiently downwardly curved
as a function of copy number in order for saturation to be prevented. Brookfield
(1982) has come independently to a similar conclusion on the basis of computer
simulation results, but thinks that the equilibrium mean copy number per
individual, n, must be so high in relation to the intensity of selection that many
individuals suffer lethality. But, as our results show, this is not in general the case.
For example, with the parameters used in Table 2, the mean fitness of an infinite
population atequilibriumisexpected to be approximately 955 % of that of copy-free
individuals; the fitness of individuals with copy number 2 standard deviations
above the mean is 91"3%. This is due to the fact that copy number stabilizes at
a level far below that at which a substantial loss in fitness occurs, with this model.
If n is small compared with T, equation (20c) shows that at equilibrium

rr-^ « u — v. (29)
on
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This is analogous to Haldane's (1937) result for the genetic load with mutation-
selection balance, and shows that, with small values of u and v (as seemed realistic
to assume), a small decrement in fitness is sufficient to balance the increase in copy
number by transposition. The reason for this disagreement is not clear, but
Brookfield's conclusion that selection cannot plausibly maintain stable copy
numbers does not seem to be generally valid. Selection can, of course, occur jointly
with regulated transposition, but we have not analysed this in detail.

This model of selection is, of course, not the only possible one. It is appropriate
for a situation in which individuals carrying elements are at a selective disadvantage,
due to the induction of semi-dominant deleterious mutations by insertion of the
elements, provided that element frequencies at each locus are sufficiently small that
elements rarely become homozygous. In this situation, n would refer to the number
of heterozygous elements carried by an individual. It is known that deleterious
mutants generally have heterozygous effects on viability in Drosophila (Simmons
& Crow, 1977), so that this model has some biological plausibility. There is also
evidence for a downwardly curved relationship between viability and the number
of mutants accumulated experimentally on Drosophila chromosomes (Simmons &
Crow, 1977), which fits the above condition for maintenance of a stable copy
number.

(ii) Variation in copy number between individuals

If an equilibrium is maintained without saturation of available sites, then the
results of the simulations shown in Tables 1 and 2 (together with the considerations
of Appendix 2) suggest strongly that linkage disequilibrium effects can be
neglected for practical purposes. Furthermore, in a large population, variation in
element frequencies between loci can be neglected. Equation (4) implies that,
under these conditions, variation in copy number between individuals should be
approximately binomial in form, with variance n(l —n/T); with large T, a Poisson
distribution with variance n is a sufficiently good approximation for most
purposes. Unfortunately, there are too little population data available at present
to test this with any precision. Langley & Montgomery (1983) have sereened 20 X
chromosomes extracted from a natural population of D. melanogaster in North
Carolina, and established the salivary chromosome locations of members of the
families copia, 297 and 412 by means of in situ hybridization. The means and
variances of copy number per chromosome are 1-60 and 1-94 respectively for copia,
3-80 and 417 for 297, and 250 and 237 for 412. The distributions of copy number
fit Poisson expectations in the case of copia and 412, but deviate significantly
(xl = 10-88) for 297. (The discrepancy is mainly due to an excess of chromosomes
with 3 copies of 297.) As far as these limited data go, they suggest that observed
and expected distributions of copy number agree reasonably well, except for 297
in North Carolina.

Dover (1982) has suggested that transposition of the sort discussed here can
cause evolutionary change in the absence of significant variation between individ-
uals in numbers of copies of the genetic elements concerned. The models described
above, and the data just quoted, do not support this contention. Indeed, unless
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all occupable sites are close to saturation, it is difficult to see how variation in copy
number of an approximately binomial form could be avoided.

As is obvious from equations (6) and (20), and Fig. 3, the equilibrium copy
number of an element is strongly dependent on the relative rates of transposition
and loss; if selection is involved in its maintenance, equation (29) shows that the
strength of selection against additional copies is of the order of u — v at equilibrium.
The available evidence for Drosophila suggests that transposition and loss typically
occur at rates of the order of 10~4 to 10~5 per generation (Rasmuson et al. 1981;
Ising & Block, 1981). Any hope of directly detecting selection effectsby comparing
the fitnesses of individuals with different copy numbers seems to be futile. The
well-documented increase in copy number of several families in cell culture lines
(Potter et al. 1979; Tchurikov et al. 1981) is, however, consistent with a role for
selection, although other explanations are possible.

A possible exception to this is provided by the P factor involved in hybrid
dysgenesis. The frequency of new insertions of the P element in dysgenic crosses
seems to be very high (Bingham et al. 1982), and there is evidence that copia may
also be mobilized simultaneously (Rubin et al. 1982). It has been suggested that
the absence of P factors from most laboratory stocks of D. melanogaster, in contrast
to the situation in wild populations, is due to its having only recently spread
(Kidwell, Novy & Feeley, 1981). If this is the case, then the rate of transposition
involved in its spread may have been much higher than that characteristic of
non-dysgenic crosses. The dynamics of this process would be rather different from
that envisaged in the present models, although these might still be relevant to the
interpretation of copy number distributions in natural populations.

(iii) Samples from natural populations

As mentioned in Section (ii), data on the distributions of numbers of copies and
chromosomal locations of transposable elements are becoming available for
samples of chromosomes drawn from natural populations of Drosophila, using in
situ hybridization of probes to polytene chromosomes. In order to test the
adequacy of the fit of the distributions derived earlier to these data, it is clearly
necessary to have a theory of the statistical properties of samples drawn from such
distributions. Work on this problem is only in its infancy. Kaplan & Brookfield
(1983 a, b) have derived some results that give the expected occupancy profile for
a set of haploid genomes taken from a population, i.e. the numbers of chromosomal
sites (identified by virtue of being occupied by the given element in at least one
of the sampled genomes) that are occupied in 1, 2, 3 , . . .independent genomes in
the sample. Their methods assume that the total number of occupable sites is
effectively infinite, so that a, in equations such as (11) can be taken as zero. The
distribution is then characterized by the single parameter /?, which they estimate
from an equation relating /? (their 6) to the total number of chromosomal sites
identified in the sample.

A related procedure can be developed for the case of general values of a and /?,
assuming that the probability distribution of element frequencies fits a beta
distribution, as in equation (11). The goodness of fit of the observed occupancy
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profile to the expected one for any given a, /? pair can be computed by a ^
statistic £ (Appendix 3). The value of £ for the a, /? pair that minimize it can be
compared with other assumed values. Two useful extreme alternatives to contrast
with the case of best fit are:

(a) The case of a = 0, with ft obtained by the method of Kaplan & Brookfield
(1983a). In this case, all multiple occupancy must be due to drift of element
frequencies in a finite population.

(6) The case of equal element frequencies at all loci (a and /? infinite), described
in Appendix 3. In this case, multiple occupancy is due entirely to the fact that
element frequencies at each site are non-zero, because of the finite number of
occupable sites.

Table 3. Analysis of the data of Langley & Montgomery (1983) on the distribution
of 297 over 20 X chromosomes from a N. Carolina population of D. melanogaster

No. of chromosomes
occupied at a site

No. of sites observed
with given occupancy

No. of sites expected
with given occupancy

(a)
(b)
(e)

1

35

35-57
27-55
34-32

2

11

9-73
14-36
9-84

3

2

3-46
4-73
3-59

4

2

1-35
110
1-42

5

1

0-54
019
0-58

> 5

0

0-33
003
0-40

—

1-85
8-50
1-79

Jistimai

—

0 0

73
1340

(a) are the expectations using the method of Kaplan & Brookfield (1983 a), who assume a =0
and estimate /? as 16-72; (6) are the estimates obtained assuming infinite a and fi and estimating
the value off that minimizes £ on this assumption (x = 0052); (c) uses the joint estimation of
a and fi (a = 0048, /? = 16-70) by minimization of £.

As an illustration of this method, which is computationally very simple, Table 3
shows the analysis of the data of Langley & Montgomery (1983) on the
distribution of 297 in the sample of X chromosomes mentioned earlier. The
observed and expected occupancy profiles are very similar for case (a) (a = 0), and
fit is barely improved by joint estimation of a and /?. Case (b), with infinite a and
/?, gives a noticeably worse fit, but this is not statistically significant. The estimates
of \T, the number of occupable sites in a haploid X chromosome genome, are 1340
for the joint estimation of a and /?, and 73 for case (b).

Similar calculations can be done for the data on copia and 412 for the same
sample. In the case of 412, the best fit is obtained with a = 0 and ft = 30; with
copia, infinite a and /?, with an element frequency of 002 per site (\T = 82), give
the best fit. As in the case of 297, the differences in goodness of fit are not large
for the three alternatives considered, although case (6) again gives the worst fit
for 412.

It is clearly not easy to discriminate between alternative models that can
generate an adequate fit to the same set of data, particularly as the in situ
hybridization methods can only locate the positions of elements to polytene
chromosome bands (at best). Apparent multiple occupancy of the same site may
thus reflect occupancy of different, but neighbouring, sites, as discussed by Kaplan
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& Brookfleld (1983). The estimated number of sites is clearly biased downwards
for this reason, and /? will tend to be underestimated.

Nevertheless, it is interesting to note that the data of Langley & Montgomery
(1983) suggest high/? values (ranging from 167 for 297 to infinity for copia) when
the joint estimation procedure for a and /? is applied. This does not necessarily mean
that the loss rate v that appears in the product /? = &Nev in equation (11) is very
high. Natural populations of Drosophila are not closed entities, as this formula
assumes, and the evidence from allozyme variation in Drosophila suggests that
there is usually little genetic differentiation between local populations (Lewontin,
1974). The problem of obtaining the form of gene frequency distributions for
general models of migration and genetic drift has not been solved (Felsenstein,
1976); the only case where a solution is known is when a fraction m of the genes
of a local population are derived from the gene pool of the species at large, and
(1—m) are of local origin. In this case, a and /? in equation (11) include the
additional terms 4Nemx and 4iVgm(l — x) respectively, where x is the expected
element frequency given by the same equation as previously (f = /*a/[/«rt + w]) (cf.
Crow & Kimura, 1970, p. 437). As mentioned in Section 4(ii), the effects of weak
selection can also be incorporated into /? (equation [28]), so that there is some hope
that the beta distribution can be used as a basis for inference about natural
populations. Large values of /? can clearly arise because x is close to zero (if T is
large) and 4iVgm is substantial, even if 4:Nev is small.

I t would clearly be of great interest to have data on geographical patterns of
variation in element frequencies, to compare with the patterns observed at
conventional gene loci, although the lack of resolution of in situ hybridization
techniques may hinder accurate analysis of such patterns. The data of Pierce &
Lucchesi (1981) on Dm25 do not suggest any obvious geographical differentiation,
but they are very limited in quantity.

(iv) Discrepancies between simulation results and theory

As described in Sections 3(iii) and 4(ii), there are some discrepancies between
the theoretical distributions of element frequency in finite populations and those
obtained in the simulations. In particular, there is a consistent tendency in the
simulations for more loci to have lost the element than is expected, particularly
with selection. As shown in Appendix 2, linkage disequilibrium generated by
selection does not seem to be responsible for these effects.

A factor which probably does play a role is a considerable excess in variance
of the mean copy number between different runs of the same parameter set, over
the variance that is expected on the assumption of independence between the
probability distributions of element frequencies at different loci. This excess
indicates a positive correlation in frequencies between loci from the same population
compared with loci from different populations, and is analysed in detail in
Appendix 4.

Whatever the source of the excess variance, it would be expected to cause an
increased rate of loss of the element, since there will be more populations with low
values of n, which are the most susceptible to the loss of segregating loci.
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Furthermore, the relative reduction with small n in the net rate of generation of
new copies (nun) of the element by transposition is smaller with regulated
transposition, because of the compensating effect of the increase in u as n declines.
The rate of escape of loci from the state of loss or low frequency of the element
is therefore relatively higher with regulated transposition. This may explain the
greater proportional discrepancies in the cases with selection and no regulation.

(v) Conclusions

Despite these discrepancies, there is remarkably good general agreement between
the simulation results and the distributions expected on the simplest assumptions
concerning independence between loci. It would seem that classical population
genetics models are easily adapted to the analysis of the dynamics of transposable
elements with sexual reproduction. Although our models have assumed diploidy,
the general results are equally applicable to sexual species where there is a
predominantly haploid life-history. As pointed out by Hickey (1982), however, the
occurrence of sexual reproduction and segregation (but not recombination) is
crucial for replicative transposition to cause an increase in copy number within
a large population.
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APPENDIX 1. EQUALIZATION OF ELEMENT FREQUENCIES OVER LOCI IN AN
INFINITE POPULATION

Using equation (18 a), and writing x and cr| for the mean and variance of element
frequency across loci, we have

Axx[x(l-x)-al]—^-+(u-v)z. (A 1)

Writing Sxt = xi — x, we also have

A(8xt) » Sxt[(l-2S) + <r%-Sxt]^^-Sxt{flK+v). (A 2)

Noting that cr% = 21Sxj/T, so that \TAa\ « 2I&c(A(&tt), and neglecting terms
in Sx\, we obtain from equation (A 2)

^ ] (A3)

Assuming din w/dn ^ 0 and x ̂  \, which is the case in most biologically realistic
situations, equation (A 3) implies that A<r| < 0, the equality holding only when
<r| = 0, i.e. when element frequencies have been equalized. This result is true even
in the absence of selection.
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APPENDIX 2. LINKAGE DISEQUILIBRIUM BETWEEN TRANSPOSABLE
ELEMENTS GENERATED BY SELECTION

The theoretical estimate of 8 = £Li<iDii, the contribution of linkage disequi-
librium to Vn in equation (4), can be obtained using the method of Bulmer (1980,
pp. 158-160). Assuming that copy number per individual, n, is normally distributed
within a population, Bulmer's equation (945) shows that selection in an infinite
population causes 8 to converge to the value given by

8=AVJ2H, (A 4)

Table 4. Linkage disequilibrium effects with selection
N = 50 N = 250

Linkage
Expected S
Simulated 8
Expected D for
adjacent loci

Loose

-0029
-0-807
- 3-70 x lO"6

Tight
-0-250
-1-685
-3-70xl0~5

Loose
-0042
+ 0093
-4-90 xlO"6

Tight
-0-321
-0-339
-4-58xlO"6

See text for further explanation.

where H is the harmonic mean of the recombination fractions over all pairs of loci
involved, and A Vn is the change in variance in copy number induced by selection
within a single generation. Iff(n) is the frequency of individuals with n copies, then

Vn + AVn = ±Xwn(n-n)*f(n). (A 5)

Assuming normality, and approximating wn by the first two terms of a Taylor's
expansion about n, this yields the expression

Using the means of n and Vn found in the simulations, it is easy to calculate
8 from equation (A 4), for a given value of//. In the case of 2 chromosomes each
carrying m loci at intervals of r map units, it is easily found from Haldane's
mapping function that

H = m(2m-l) Il2m2 + 4i,i/(l-e-2r(m-i))\. (A 7)

For m = 31 (T = 124), H takes values of 01277 and 00146 for r = 003 and 0003
respectively, corresponding to the cases of loose and tight linkage in the
simulations.

Table 4 shows values of 8 calculated from these formulae, and compares them
with values found in the simulations in Table 2. The expected D values for adjacent
loci, calculated from Bulmer's equation (9.44), are also shown. It is clear that
linkage disequilibrium effects are expected to be slight, even with tight linkage,
with this intensity of selection. Because of the variances in D expected
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with small population size, the general lack of good quantitative agreement
between theoretical and simulated values of S is not surprising; there is, however,
close agreement in the case with tight linkage and N = 250, which is the most
favourable case for detecting selectively generated linkage disequilibrium. It
therefore seems most unlikely that linkage disequilibrium due to selection can
explain the discrepancies between the theoretical and simulated distributions.

APPENDIX 3. ANALYSIS OF DATA FROM NATURAL POPULATIONS

It is assumed that we have a set of m haploid genomes, drawn independently
from a natural population. The chromosomal sites at which a probe for a given
family of elements hybridizes are assumed to be known for each sampled genome,
enabling the occupancy profile to be determined for the sample. Let nt be the
number of chromosomal sites that are occupied by the element in i genomes (i = 1,
2, . . . , m). The mean number of sites per haploid genome {\n) is estimated by Eir /̂TO.
The expected value of nt is, from equation (16), given by

E{nt} = i^(m) [1xi(l-x)m-i(p(x)dx. (A 8)

If we assume the beta distribution of equation (11) for <f>(x), this reduces to

where n = Ta/(a + /?).
A simple procedure for estimating a and /? is to substitute the estimator of \n

into equation (A 9), and then minimize the goodness-of-flt statistic

Values of £, obtained by this method can be compared with the values generated
by the substitution of alternative estimates of a and /? into equation (A 9), such
as the estimates of /? used by Kaplan & Brookfield (1983a) who assume a = 0.
Another alternative, mentioned in the text, is to assume infinite population size,
so that a and ft are both infinite and element frequencies are equal to x = a/(a
at each locus. In this case equation (A 8) reduces to

E{nt) = tfi&^ii-x)™-*, (A 11)

£ can then be minimized with respect to x. As pointed out to us by Dr
A. W. F. Edwards, this case is equivalent to the problem studied by Lewontin &
Prout (1956), who provided a maximum likelihood estimator of \T, and hence x.
Dr Edwards' calculations on the data analysed in the text show that their method
yields consistently lower estimates of \T than the minimization of £, although the
estimates are of similar magnitude.

The significance of the fit of the observed and expected distributions can be
tested by pooling classes to avoid expectations < 5, in the usual way. The resulting
goodness-of-fit statistic will be distributed approximately as x2> with degrees of
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freedom equal to the number of cells minus the number of parameters estimated
from the data (2 in the case of methods [a] and [b] of Table 3, and 3 for method
[c]). Unfortunately, most cells have such small numbers that all the d.f. are used
up, except for the case of methods (a) and (6) applied to 297. The x\ values are
O26 and 2-98 respectively, showing no significant deviations from expected.

Table 5. Variation in mean copy number between runs and between-locus
correlations in the simulations of Table 1 and 2

(a) Regulated transposition with k = 0-05

Population size

Linkage
No. of runs analysed
<T\ (simulated)
<T\ (expected, if no correlations)
Covariance
Correlation

Population size

Linkage
No. of runs analysed
<r\ (simulated)
cr% (expected, if no correlations)
Covariance
Correlation

10

Loose
10
6909**
25-82
00029
00275

Loose
10
64-80**
1208
0-0035
00716

Loose
10
50-30**
16-24
00029
00274

(b)

50

Tight
10
50-66**
11-93
00026
00532

50

Tight
10

10311**
13-59
00059
01080

Selection

250

Loose
5
6-54**
1 84
00003
00420

100

Loose
10
4912**
10-86
00025
0-0577

Tight
5
2-33
208
00002
00164

** Significant excess over the expected variance at the 1 % level.

APPENDIX 4. EXCESS VARIANCE IN MEAN COPY NUMBER BETWEEN RUNS

The expected variance in n between replicate runs of the same parameter set
can be obtained as follows, assuming that the between-run variance in element
frequency takes the same value <x2 at each locus. From equation (1) we have

o-%= 27V2+ 8 Z (A 12)

where cov (xt, Xj) is the between-run covariance in element frequency between loci
i and j . If l( = %T) is the total number of loci (usually 62), the mean covariance
and correlation between locus pairs are given by

cov = (<T%-2To-2)/tt(l-l),

p = cov/cr2.

(A 13)

(A 14)

For a given set of runs, a% and <r2 can be estimated directly, and cov and p
obtained from these formulae. Table 5 displays the results for the simulations of
Table 1 (k = 005) and Table 2. There are significant effects in all but one case;
p is usually of the order of a few per cent, which is sufficient to generate a large
excess variance because of the large number of locus pairs (1891 with 62 loci). It
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is clear that the assumption of independence between the probability distributions
for different loci is to some extent violated in the simulations.

Two factors may contribute to this effect. Firstly, all loci from the same
populations share a common value of n, so that the contributions of transposition
and selection to change in element frequency (which both involve terms in n) are
correlated across loci. Calculations indicate that this effect should be larger with
selection than with regulated transposition, but this is not apparent from Table 5.
Secondly, linkage disequilibrium generated by drift may contribute to the
correlations between loci. Substantial D values may be generated with the
population sizes and recombination fractions used in the simulations (Hill, 1976).
They can contribute a large component of the variance in copy number (equation
[4]), and tend to persist from generation to generation (Bulmer, 1980, pp. 226-232).
A reduction in variance due to net negative linkage disequilibrium will tend to
reduce the efficiency of selection at all loci, but would increase the net effect of
regulated transposition, as can be seen from equation (3). An increase in variance
due to positive linkage disequilibrium has the opposite effects. This factor would
be expected to be most important with tight linkage and small population size.
There are no consistent effects of these parameters on the correlations in Table 5,
but the sampling errors are rather large and may obscure any real trends.
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