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The history of life involves countless evolutionary innovations, a
steady stream of ingenuity that has been flowing for more than 3
billion years. Very little is known about the principles of biological
organization that allow such innovation. Here, we examine these
principles for evolutionary innovation in gene expression patterns.
To this end, we study a model for the transcriptional regulation
networks that are at the heart of embryonic development. A
genotype corresponds to a regulatory network of a given topol-
ogy, and a phenotype corresponds to a steady-state gene expres-
sion pattern. Networks with the same phenotype form a connected
graph in genotype space, where two networks are immediate
neighbors if they differ by one regulatory interaction. We show
that an evolutionary search on this graph can reach genotypes that
are as different from each other as if they were chosen at random
in genotype space, allowing evolutionary access to different kinds
of innovation while staying close to a viable phenotype. Thus,
although robustness to mutations may hinder innovation in the
short term, we conclude that long-term innovation in gene expres-
sion patterns can only emerge in the presence of the robustness
caused by connected genotype graphs.

evolutionary novelty � evolvability � genotype–phenotype maps

L ife’s enormous creativity is evident from earth’s millions of
species with unique life styles, from dazzlingly different

modes of development to macromolecules, like proteins and
RNA, in which many different molecular functions (catalysis,
support, and communication) have evolved. There are many
wonderful case studies of individual evolutionary innovations,
from the beaks of Darwin’s finches (1) to the biochemical
innovations represented by the highly refractory eye lens pro-
teins derived from various enzymes (2, 3). These and all other
evolutionary innovations are produced by a combination of
mutation and natural selection, without apparent foresight and
planning. However, mutation and selection do not automatically
produce evolutionary innovation. For instance, man-made sys-
tems, such as computer hardware and software, seem to be
outright incapable of innovation through mutation and selection.
Those complex systems exhibit brittleness: Modifying one com-
ponent often leads to disastrous failure. Diligent research in
areas such as ‘‘evolvable hardware’’ (4–6) is needed to under-
stand how complex functionalities can be rendered insensitive to
individual component changes, thereby facilitating innovation. It
is important to discover what renders living beings so capable of
innovation, partly because the lessons learned could be applied
to the design of complex systems with specific functions.

Biologists increasingly realize that genetic systems need to be
robust to both genetic and nongenetic change (7–14). Robust-
ness means that a system keeps performing its function in the
face of perturbations. For example, many proteins can continue
to catalyze chemical reactions, regulate transcription, commu-
nicate signals, and serve other roles despite mutations changing
many amino acids; regulatory gene networks continue to func-
tion despite noisy expression of their constituent genes; embryos
continue to develop normally even when faced with substantial

environmental variation. Mutational robustness means that a
system produces little phenotypic variation when subjected to
genotypic variation caused by mutations. At first sight, such
robustness might pose a problem for evolutionary innovation,
because a robust system cannot produce much of the variation
that can become the basis for evolutionary innovation.

As we shall see, there is some truth to this appearance, but it
is in other respects f lawed. Robustness and the ability to innovate
cannot only coexist, but the first may be a precondition for the
second. Individual case studies of evolutionary innovation are
essentially anecdotes based on one or a few observations and
would not take us very far in validating this assertion. To examine
the relationship between innovation and robustness, we need to
examine variation in robustness and in the ability to innovate.
That is, we need to examine a great many architectural variants
of a system with similar functions, and innovations derived from
them. Much innovation (proteins with new catalytic activities or
new organismal features like lungs or wings) is surprising,
sometimes even in hindsight. To study innovation systematically,
one needs to take the element of surprise out of it. To do this,
a context is needed where the space of all possible genotypes and
phenotypes of a biological system can be characterized, at least
in principle. Examples include the sequence (genotype) space of
RNA and proteins and the secondary or tertiary structures
(phenotypes) they form (15, 16).

We here address the problem of how robustness relates to
innovation in a model system completely different from RNA,
that of a transcriptional regulation network. In this system, the
genotype is a regulatory genotype, a set of interactions among
transcriptional regulators. The phenotype is the gene expression
pattern produced by these regulatory interactions. We shall be
interested in the relationship between robustness and the ability
to find new phenotypes, a proxy for the ability to innovate, as a
function of the genotype. Despite its level of abstraction, variants
of the model we use have proven successful in explaining the
regulatory dynamics of early developmental genes in the fruit f ly
Drosophila, as well as in predicting mutant phenotypes (17–20).
It has also helped elucidate why mutants often show a release of
genetic variation that is cryptic in the wild type and how adaptive
evolution of robustness occurs in genetic networks of a given
topology (14, 21–27).

The model (Fig. 1a) is concerned with a regulatory network
of N transcriptional regulators, which are represented by their
expression patterns S(t) � (S1(t), S2(t), . . . , SN(t)) at some time
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t during a developmental or cell biological process and in one cell
or domain of an embryo. These transcriptional regulators can
influence each other’s expression through cross-regulatory and
autoregulatory interactions, which are encapsulated in a matrix
w � (wij). The elements wij of this matrix indicate the strength of
the regulatory influence that gene j has on gene i (Fig. 1a). This
influence can be either activating (wij � 0), repressing (wij � 0),
or absent. These regulatory interactions can change the expres-
sion state of the network S(t) as time t progresses, according to
the difference equation Si(t � �) � �[�j�1

N wij Sj(t)], where � is
a constant, and �(.) is a sigmoidal function whose values lie in
the interval (�1, �1). This function reflects cooperative regu-
lation of gene i’s expression by other genes. We focus on the
strong cooperation limit where � becomes the sign function, and
thus Si assumes values �1.

We are concerned here with networks whose expression state
starts from a prespecified initial state S(0) at some time t � 0
during development, and arrives at a prespecified stable equi-
librium state S�. We will call such a network a viable network.
The initial state is determined by regulatory factors upstream of
the network, which may represent signals from the cell’s envi-
ronment or from nearby domains of an embryo. Transcriptional
regulators that are expressed in the stable equilibrium state S�

affect the expression of genes downstream of the network, and
thus the course of development. The matrix w represents the
(regulatory) genotype of this system, and the expression state S�

its phenotype. We here examine variation in the network geno-
type w through variation in the topology of a network, the ‘‘who
interacts with whom,’’ represented by values of wij that are
different from zero (Fig. 1b). Part of the motivation to focus on
topologies is biological: Because biochemical parameters deter-
mining the behavior of cellular circuitry change incessantly and
are difficult to measure, circuit topologies (instead of different
parameters within one topology) are becoming an increasingly
important subject of study (8, 28, 29). Changes in topology
correspond to the loss of a regulatory interaction (wij30), or to
the appearance of a new regulatory interaction that was previ-
ously absent. Such topological changes can occur on very short
evolutionary time scales, in particular in higher eukaryotes with
large regulatory regions (30).

For this model, we will show that genotype space can be
traversed in small steps without changing the phenotype, a
property that is crucial for evolutionary innovation in gene
expression patterns. Furthermore, different novel gene expres-
sion patterns become accessible in different parts of genotype
space. Our use of an abstract model of a biological system
permits a clearer understanding of the relationship between
robustness and evolutionary innovation and the properties of the
genotype to phenotype mapping.

Results
Long-Distance Travel in a Vast Network Space. Networks with
different topologies can be thought of as existing in a space that
has as many dimensions (N 2) as there are regulatory interac-
tions. We showed previously (31) that all or most networks with
the same gene expression pattern S� form a connected graph
(Fig. 1 b and c) in this space. We had previously called this graph
a metagraph (a graph of graphs) because each network can be
viewed itself as a graph (31). However, for consistency with
established terminology, we here refer to this graph as a neutral
network (15). To avoid confusion between a neutral network and

network is connected and the number of edges incident on a node is highly
variable. Note that neutral networks for greater numbers of genes typically
have a huge number of nodes. The number of nodes in a neutral network can
be counted, because different nodes differ only in the signs of their regulatory
interactions.

W =

mRNA

protein

Gene 1

Gene 2

Gene 3

Gene 4

Gene 5

a

b

c

Fig. 1. Neutral networks in transcriptional regulation. (a) A transcriptional
regulation network. Solid black bars indicate genes that encode transcrip-
tional regulators in a hypothetical network of five genes. Each gene is ex-
pressed at a level that is influenced by the transcriptional regulators in the
network. This influence is usually exerted through the binding of a transcrip-
tional regulator to a gene’s regulatory region (horizontal line). The model
represents the regulatory interactions between transcription factors j and
genes i through a matrix w � (wij). A regulator’s effect can be activating (wij

� 0, red rectangles) or repressing (wij � 0, blue rectangles). Any given gene’s
expression may be unaffected by most regulators in the network (wij � 0,
white rectangles). The different hues of red and blue correspond to different
magnitudes of wij. The highly regular correspondence of matrix entries to
binding sites serves the purpose of illustration and is not normally found,
because transcription factor binding sites usually function, regardless of their
position in a regulatory region. (b) The topology on the space of genotypes
induced by single mutations. The center network shows a hypothetical net-
work of five genes (Upper) and its matrix of regulatory interactions w (Lower),
if genes are numbered clockwise from the uppermost gene. Red arrows
indicate activating interactions, and blue lines terminating in a circle indicate
repressive interactions. The leftmost network and the center network differ in
one repressive interaction from gene 4 to gene 3 (dashed gray line, black cross,
and large open rectangle). The rightmost network and the middle network
differ in one activating interaction from gene 1 to gene 5 (dashed line, black
cross, and large white rectangle). Each of the three networks corresponds to
one node in a graph as indicated by the large circle around the networks.
These circles are connected because the respective networks are neighbors;
i.e., they differ by one regulatory interaction. [a and b were reproduced with
permission from Ciliberti et al. (31) (Copyright 2007, Public Library of Science)].
(c) The neutral network for a given phenotype. Each node corresponds to a
network of a given topology, and two nodes are connected by an edge if they
differ at one regulatory interaction (n � 3 genes, 4 � M � 5 regulatory
interactions, and Hamming distance of S(0) and S� of d � 2/3). This neutral

13592 � www.pnas.org�cgi�doi�10.1073�pnas.0705396104 Ciliberti et al.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 C
en

tr
e 

de
 D

oc
 F

ac
ul

te
 M

ed
ec

in
e 

on
 A

pr
il 

25
, 2

02
5 

fr
om

 I
P 

ad
dr

es
s 

13
0.

22
3.

49
.1

11
.



its nodes, which are themselves (regulatory) networks, we will
often refer to the regulatory networks as genotypes. Two geno-
types are neighbors in the neutral network if they differ by only
one regulatory interaction. The neutral network can be traversed
in small evolutionary steps that change regulatory regions on
DNA. Each such step affects just one regulatory interaction at
a time, and leaves the network’s gene expression pattern S�

unchanged. To encapsulate a more general notion of distance
among regulatory networks within this space, we introduce a
measure of the distance of genotypes (network topologies).
Specifically, we define the distance D of two network topologies
w and w	 as

D
w, w	� �
1

2M�
�
i, j

�sign
wij� � sign
w	ij� � .

Here, M� is the maximum number of regulatory interactions,
which we restrict to explore how our results depend on this
number, and sign(x) is the sign function [sign(x) � �1 depending
on the sign of x and sign(x) � 0 for x � 0]. This distance function
ranges from D � 0 for identical networks to D � 1 for networks
with completely different topologies or organization.

Equipped with this distance measure, we first ask how far we
can travel in genotype space without affecting the phenotype,
that is, the equilibrium gene expression pattern S� attained in
response to an initial gene expression pattern S(0). In a previous
contribution, we have shown that the number of viable networks,
networks with the same phenotype S�, is astronomically large
even for moderate N (it grows exponentially with N 2) (31). Do
these networks occur in a small, localized area of genotype
space? To find out, we first randomly sampled [see supporting
information (SI) Text] networks with the same phenotype S�,
and determined the distribution of genotype distances D be-
tween them. SI Fig. 4a shows that the mean distance of random
networks is greater than D � 0.8. This means that randomly
chosen pairs of networks with the same phenotype have vastly
different organization, suggesting that networks with the same
phenotype can be found in very distant ‘‘corners’’ of network
space. This observation is not a peculiarity of the particular
distance measure we use: It also holds, for a second, different
distance measure D	, as SI Fig. 5 shows.

The suggestion that very distant networks can have the same
phenotype is confirmed by a complementary analysis, which asks
about the maximal genotype distance in a large random sample
of network pairs with the same phenotype. This maximum
distance of randomly chosen network pairs is a lower bound for
the maximum possible genotype distance for networks of the
same genotype. SI Table 1 shows that this maximum distance is
generally large and often equal to the maximum possible dis-
tance D � 1.

In summary, most or all of the vast space of network topologies
can be traversed in small steps without changing a network’s
phenotype (gene expression pattern S�).

Distant Travel Is Necessary to Find All New Phenotypes. In the
context of our model, evolutionary innovation is innovation in
gene expression patterns S�. For a network with N genes, the
total number of such gene expression patterns is large (2N).
Here, we ask the following: Given one viable network, how far
do we have to travel in the space of genotypes to encounter new
phenotypes, especially phenotypes that are very different from
the network’s original phenotype S�? To address this question,
we define as a distance measure of two phenotypes S� and S	� the
Hamming distance d � 1 � �j �[S�(j), S	�(j)]/N, which ranges
from zero to one. (� is the Kronecker �-function, which is equal
to one if its two arguments are equal and zero otherwise.)

A first step toward answering this question is to examine the

fraction of new phenotypes S� (relative to the total number of
phenotypes, 2N) that occur in networks at a given distance D to
a reference network w. This requires us to examine networks that
differ from w in k regulatory interactions (a k-neighborhood of
w). For small k, one can easily visualize graphically the appear-
ance of new phenotypes as a function of k (SI Fig. 6). For larger
k, a quantitative analysis is needed (SI Fig. 4b). To obtain the
data shown in SI Fig. 4b we chose, at random, an initial state S(0)
and, also at random, a reference network that starting from S(0)
arrives at some equilibrium state S�

r . For each given genotype
distance D, we enumerated all networks at this distance from w
and their equilibrium states S�, if any; then we divided the
number of distinct equilibrium states found in these networks by
2N (the total number of possible equilibrium states) to obtain the
fraction of distinct equilibrium states in the neighborhood
considered. To obtain reliable estimates, we repeated this pro-
cedure for at least 25 further reference networks. SI Fig. 4b
shows the fractions of distinct equilibrium states, averaged over
our reference networks. The figure demonstrates that one needs
to travel far from any one network, that is, through about half the
genotype space (D � 0.5), to find the great majority of the 2N

possible phenotypes. We note that the set of networks at a fixed
distance D from any network contains only a small fraction of all
networks (e.g., a fraction 10�6 for D � 0.5 and n � 10).

In a complementary analysis, we asked about the phenotype
distance of networks whose genotype distance is D. Specifically,
we pursued a sampling strategy that estimates the probability
PD(d) that two viable networks with genotype distance D have
phenotypes with distance d. The data (SI Fig. 7 a and b) clearly
show that evolving networks have substantial ‘‘memory’’ of past
phenotypes. Networks at genotypic distances up to D � 0.5 from
any one network w are much more likely to have phenotypes
similar to that of w than one would expect by chance alone; this
is clear in particular from the increase with D of the mean of d
(see SI Fig. 7b Inset). Only for genotype distances greater than
that are network phenotypes no longer significantly correlated
with that of w. Taken together, these observations mean that one
has to travel far through genotype space to find all or most novel
gene expression patterns that networks can produce and to erase
any memory of past gene expression states.

Robustness and the Ability to Innovate Are Negatively Correlated.
Robustness to environmental change and internal noise on the
one hand and to mutations on the other hand are two different
aspects of robustness in the circuits we study. In both cases, the
robust feature is the network’s equilibrium gene expression
pattern S�. Robustness to noise corresponds to robustness of S�

to changes in the initial expression pattern S(0) or to perturba-
tions in the time evolution of the dynamics. Robustness to
mutations corresponds to robustness of S� to changes in regu-
latory interactions. A network’s mutational robustness R� is
simply the fraction of its immediate neighbors in genotype space
that have the same phenotype. (In the graph representation of
Fig. 1c, it is the degree of the node in the neutral network divided
by the total number of neighbors, viable or not.) We previously
showed (31) that the different measures of robustness are
strongly correlated, so from here on we shall focus mainly on
mutational robustness, because its geometric interpretation is
simplest. We also found that the value of robustness varies widely
among networks with the same phenotype (31). This is already
the case for very small networks, as exemplified by Fig. 1c.

We next asked how network robustness relates to the ability
to find new phenotypes through regulatory mutations. To ad-
dress this question, we studied a sample of 3,000 randomly
chosen networks. Each of these networks has an initial gene
expression state S(0) and arrives at a given equilibrium state S�.
For each network w, we then determined its mutational robust-
ness R�(w). In addition, we examined all networks at a distance
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no greater than D around w in genotype space, and identified all
networks w	 in this neighborhood that have some equilibrium
gene expression state S�. We then determined the fraction f(w)
of the networks w	 in this neighborhood for which S� was
different from the S� of w. This fraction indicates how readily
changes in w can lead to new phenotypes. By repeating this
procedure for all networks w in our sample, we arrive at 3,000
values for [R�(w), f(w)]. Fig. 2a illustrates the results for the
neighborhood of radius D � 0.1; we see a strong negative
association between robustness R� and the indicator f(w) of the
ability to innovate (Spearman’s s � �0.55, P � 10�17; n � 8, c �
0.25, and d � 0.5). A highly significant negative association exists
also when R�(w) is replaced by either of two measures of
robustness to noise: (i) the likelihood that a change in a single
gene’s expression pattern in S(0) changes S� (Spearman’s s �
�0.29, P � 10�17) or (ii) the fraction of genes whose expression
pattern needs to change in S(0) such that the probability of
arriving at S� falls to one-half (Spearman’s s � �0.38, P �
10�17). Negative associations between robustness and innovative
potential f(w) are also observed for different values of N, c, D,
and d (results not shown).

The Large Diameter of Neutral Networks is Critical for Phenotypic
Diversity. In our final analysis, we examined pairs of networks
with the same phenotype and similar robustness R� but at
different positions in genotype space. Consider such a pair of
networks, w1 and w2, which have some genotype distance D12. In

a small neighborhood with radius D around each of these two
networks in genotype space, we will find two sets of new
phenotypes called {P1} and {P2}. We are interested in the
phenotypes that are ‘‘unique,’’ i.e., that appear in {P1} or {P2}
but not in both. Let f be the fraction of these phenotypes,
calculated as f � 1 �  P1 � P2 /( P1 �  P2 �  P1 � P2 ),
where  P indicates the number of elements in the set {P}. If this
fraction is small, even for networks of large genotype distance,
then we would conclude that most networks of the same
phenotype produce the same or similar new phenotypes when
mutated. In contrast, if we found that this fraction is large, we
would conclude that a network’s position in genotype space
critically determines what kind of innovations (new phenotypes)
can be produced from it. In this case, the large typical genotype
distances of nodes on the neutral network (SI Fig. 4a) could lead
to very diverse new phenotypes, some fraction of which could
lead to innovations.

Fig. 2b shows that the fraction f of unique new phenotypes
increases very rapidly with increasing genotype distance of two
networks w1 and w2. For instance, for networks of n � 8 genes,
at a genotype distance of merely D12 � 0.06, 34% of new
phenotypes found in the 2-neighborhood of two networks are
different. As the genotype distance increases, this positive
association between genotype distance and the diversity of
innovation decreases, as Fig. 2c shows. In Fig. 2c, each genotype
pair is chosen at random from a neutral network, the only
constraint being that the mutational robustness R� of both

Fig. 2. The ability to innovate depends on a genotype’s position in the neutral network. (a) A tradeoff between robustness and innovation. The horizontal
axis shows mutational robustness R�, the fraction of a network’s w topological neighbors that share the same equilibrium expression state, S�, with w. For each
network w whose robustness is displayed on the horizontal axis, the vertical axis shows the fraction of networks of genotype distance D � 0.1 around w, whose
equilibrium state is different from S�. This fraction declines with increasing robustness. n � 8, c � 0.25, and d � 0.5. (b) The horizontal axis shows genotype distance
D12 of two networks (w1 and w2) with the same phenotype. The vertical axis shows the mean fraction f of unique new phenotypes, as defined in the main text,
found in a k-neighborhood (see legend for k) around these networks. If f is close to zero, then all or most of the phenotypes of networks in the two neighborhoods
are identical. If f is close to one, then almost all phenotypes in the two neighborhoods are different. Standard deviations around each data point are no greater
than 8 � 10�3. (c) Like b, except for a sample of 2,210 network pairs (w1 and w2) chosen at random from the neutral network and with mutational robustness
R� in the interval (0.45, 0.60). n � 8, c � 0.25, d � 0.5, and k � 3. As opposed to the strong and positive statistical association between genotype distance and
f for networks at small D12, this association is considerably weaker at larger distances. Notice the large fraction of unique new phenotypes for almost all network
pairs shown (mean f � 0.73). (d) Histogram of f for 1-neighbors (blue), 2-neighbors (red), and 3-neighbors (green) of 2,210 randomly chosen network pairs with
R� in the interval (0.45, 0.60). Data are shown for n � 8, c � 0.25, and d � 0.5. For one-mutant neighbors, the robustness R� of a network w is the fraction of
a network’s neighbors that has the same gene expression pattern S�. For k-neighbors with k � 1, we define R� as the fraction of all networks that differ from
w by no more than k regulatory interactions and that have the same gene expression pattern S�.
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genotypes lies in the narrow interval (0.45, 0.60). However, at
these large (and typical) distances for two genotypes on the
neutral network, the mean fraction of unique phenotypes for the
two genotypes is high: f � 0.73. In other words, most phenotypes
found in a neighborhood of these genotypes are unique. Finally,
Fig. 2d shows histograms of f for the same sample of genotypes
used in Fig. 2c. Blue, red, and green bars represent f in 1-, 2-, and
3-neighborhoods, respectively. An appreciable fraction of net-
work pairs has the same phenotypes in the 1-neighborhood ( f �
0). Nonetheless, even in 1-neighborhoods the average fraction of
unique phenotypes is �0.4. In other words, in two randomly
chosen genotypes on a neutral network, a random mutation that
produces new phenotypes has a �40% chance to produce new
phenotypes that differ from each other. In the 2- and 3-
neighborhoods, the distribution of f is shifted to the right,
indicating even greater diversity of new phenotypes. Qualita-
tively identical patterns are observed for different network sizes
N, fraction c of interacting genes, and mutational robustness R�.

In summary, two networks with exactly the same phenotype
may produce very different innovations, depending on their
organization, i.e., their position in genotype space. On a final
note, we emphasize that, although we reported numerical work
only for networks in which regulatory interactions can take one
of three values (wij � �1, 0), our key results also hold for
continuously valued regulatory interactions. Specifically, vastly
different genotypes can have the same phenotype, genotypes
close together can have uncorrelated phenotypes, and genotypes
in different positions on the neutral network can produce very
different new phenotypes.

Discussion
In summary, we have shown that networks with vastly different
organizations can have the same phenotype. In contrast, two
networks with completely unrelated phenotypes can be found
very close to each other in genotype space, even though changing
a genotype at random will often lead to highly similar pheno-
types. This latter property, a genotype’s long ‘‘memory’’ of past
phenotypes, is not self-evident. For instance, it is not observed
in another kind of biological system, RNA, where the relation-
ship between genotype (nucleotide sequence) and one aspect of
phenotype (secondary structure) has been thoroughly explored
(15, 32–36). Indeed, in that system, even very few changes in a
molecule’s nucleotide sequence can completely randomize the
molecule’s structure (15). Within our models of gene networks,
the long genotypic memory, together with the existence of
regions of high robustness in a neutral network (31), relate to the
phenomenon of developmental constraints (37), where geno-
typic variation leads to little or no variation in one aspect of an
organism’s phenotype, that is, its development and its body plan.
This relation between genotype memory and constraint is in-
triguing, because our model abstractly represents the kinds of
transcriptional regulation networks that pattern some of the
most constrained body plan features of organisms, including the
early segmentation genes in flies, and the Hox genes involved in
axial patterning of most animal phyla (19, 38).

Under point mutations, regulatory networks of identical phe-
notype can produce very different new phenotypes, depending
on their location in genotype space. Taken together with our
previous results (19), this means that both the connectedness of
a neutral network (with the robustness that this implies) and the
fact that a neutral network spans genotype space are crucially
important for both robustness and evolutionary innovation. Fig.
3 illustrates that neither feature separately would achieve both
robustness and evolutionary innovation. If there were multiple
genotypes that produced the same phenotype, but if these
genotypes were isolated from each other (Fig. 3 Left), a network
would be neither robust nor capable of producing many different
evolutionary innovations. If the genotypes were connected but

highly localized in genotype space (Fig. 3 Right), robustness
would be high, but the ability to innovate would be limited
because the neighbors of these genotypes would produce very
few novel phenotypes. Only when paths through genotype space
connect many different networks with identical phenotypes (Fig.
3 Center) are both robustness and evolutionary innovation
achieved. Then evolving networks can reach different locations
in genotype space, which makes the generation of diverse new
phenotypes possible. The intermediate to high robustness im-
plied by the connectedness of the neutral network is thus a
prerequisite for the ability to innovate. It is important to
appreciate that this conclusion would not emerge from studying
individual networks and their close neighborhoods: There, ro-
bustness and innovation are necessarily antagonistic because
having more neighbors of the same phenotype leaves fewer
possibilities for neighbors with new phenotypes. To appreciate
the innovative potential of our model regulatory networks, one
needs to consider the system at a higher level, namely that of the
neutral network. If the patterns we observe hold in general for
biological systems, then the ability of living organisms to inno-
vate is an emergent property, a feature typical of many complex
systems.

Among the two factors that influence the outcome of biolog-
ical evolution, selection and the production of variation through
mutation, we here focused entirely on variation. In doing so, we
did not intend to diminish the role of natural selection, because
we are acutely aware that the vast majority of mutations in any
genetic system are deleterious and that only a small fraction may
lead to evolutionary innovations. However, we emphasize that
only a genetic architecture like the one of Fig. 3 Center can
explore the great diversity of new phenotypes needed to sift
potential innovations through natural selection.

We note that the phenomenon we describe would not be the
only determinant of a biological system’s ability to innovate.
Other candidates include the mutation rate and the modular
organization of biological systems (3, 39–42). With few excep-
tions, however, our understanding of evolutionary innovation
comes from a large number of individual case studies. Albeit
beautiful examples of natural history, they may not add up to
fundamental evolutionary principles that allow innovations to

Low Robustness
Low Innovation

High Robustness
Low Innovation

High Robustness
High Innovation

Fig. 3. Conditions for high robustness and the ability to innovate. Each
rectangle shows a hypothetical genotype space. Individual genotypes with
identical phenotypes (regulatory networks that produce identical gene ex-
pression patterns) are shown as circles in this space. Nodes of the neutral
network are green. Other colors indicate novel phenotypes. Lines connect
genotypes that are nearest neighbors in this space, corresponding in our case
to networks that differ in one regulatory interaction. (Left) Genotypes are
widely scattered and isolated in this space. (Center) The genotypes are widely
scattered but also connected in this space. (Right) The genotypes occur in a
small region of the space, and they are connected. We note that this visual-
ization is for expository purposes only. Actual genotype spaces may have
hundreds of dimensions, and there may be an astronomical number of geno-
types with the same phenotype.
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emerge. Abstraction, with all of the healthy skepticism that it
arouses, may be the only access road to such principles.

Methods
The numerical procedures we used fall into three classes. First,
iteration of discrete time equations for the gene expression
states, Si, which is straightforward and has no conceptual sub-
tleties. Second, exact enumeration of elements in a finite space
by ‘‘brute force.’’ In SI Text, we show how combinatorial
techniques can make such enumerations computationally effi-
cient. Third, unbiased sampling of elements in a finite space. This
is the object of Monte Carlo algorithms that are standard tools
of computational physics (43, 44).

To characterize classes of gene regulatory networks (geno-
types) and their gene expression states (phenotypes), one must
be able (i) to sample each class uniformly and (ii) to search a
given neighborhood of a network. Here, we give an overview of
the approaches we took (see SI Text for details).

To sample viable networks with equal probability, we simply
generate interaction matrices w at random and determine
whether they attain the desired S�. This approach becomes
ineffective for networks with substantially more than n � 10
genes. For such larger networks, we thus use a permutation
transformation to reduce the complexity of the task (31).
Because the total number of networks (regardless of their
expression states) is easily calculated analytically, a numerical
estimate of the probability that a random network is viable
suffices to estimate the total number of viable networks.

Second, we need to characterize the networks in some k-
neighborhood of a given viable network w. (A k-neighborhood

comprises all networks that differ from w by at most k-regulatory
interactions.) The networks in this neighborhood may also be
viable; they may attain some other equilibrium gene expression
pattern; or no equilibrium at all. For small k, we can enumerate
all k-neighbors exhaustively using an extension of the Monte-
Carlo technique. For larger networks, we use a sampling ap-
proach that is guided by a combinatorial representation of the
total number of networks at a given distance k from w. This last
approach is rigorous but the cost is greater computational
complexity (see SI Text for details).

To characterize the neutral network(s) associated with one or
more phenotypes, we determine (i) the distribution of distances
of randomly chosen genotype pairs having the same phenotype;
(ii) the maximum distance of two such genotypes; and (iii) the
minimum distance between two neutral networks. We do so by
Monte Carlo sampling of the genotypes that can be reached from
a given reference genotype through a series of point changes
(modifying one interaction at a time). Specifically, we perform
a random walk which follows the Metropolis rule (45), thereby
enforcing that a neutral network is sampled uniformly.
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