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Two models of the effect of extinction and recolonization on the genetic 
differentiation of local populations are analyzed. One model is Wright’s “island 
model” in which there is gene flow from a source of fixed gene frequency. The 
other is an island model with a continuous production of new alleles and gene 
flow among all the populations. Individual and group selection are not considered. 
It is shown that the extent of population differentiation and the direction of the 
effect of the colonization and extinction process depend on the manner in 
which the propagules that establish new colonies are formed. Two extreme cases 
are considered. In the “propagulc pool” model all the individuals in a single 
propagule are derived from one population while in the “migrant pool” model, 
the individuals in a propagulc are derived from a random sample of the entire 
collection of populations. 

Many species exist in discrete local populations that become extinct and are 
recolonized by propagules derived from other local populations. However, most 
models of subdivided populations assume that each local population persists 
indefinitely (e.g., Maruyama, 1970; Latter, 1973). While these models are 
appropriate for species in which the average time until the extinction of local 
populations is large compared with the other time scales in the system, there are 
many species for which that is not likely to be the case. Studies of island popula- 
tions by Simberloff and Wilson (1969), Crowell (1973), and others have found 
relatively high extinction rates for many species including a variety of insects. 
The effect of gene flow between local populations of a species with significant 
extinction and recolonization rates has an important bearing on the possibility 
of group selection in that species because the effectiveness of group selection 
depends on the presence of genetic differences between local populations 
(Levins, 1970; Levin and Kilmer, 1974; Cohen and Eshel, 1976; Slatkin and 
\Vade, 1977). I will introduce and analyze here two simple analytic models of the 
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effect of extinction and recolonization of local populations on the genetic structure 
of those populations. 

The two models analyzed are both variations on Wright’s (1931) “island” 
model. There is no geographic structure and all local populations are assumed 
to be equally likely to receive migrants. In the first model (Model I), all the 
migrants come from an external source and new mutations are ignored. In the 
second model (Model II), all migrants come from within the collection of popula- 
tions or “metapopulation,” and there is a continuous production of new unique 
mutations (Kimura and Crow’s (1964) “infinite alleles” model). We will not 
consider either group or individual selection. 

In each of these models we will see that the results depend on the details of the 
assumptions about how the propagules that found new populations are formed. 
We will consider two possibilities, one in which the individuals in a propagule 
are all from the same existing population (the “propagule pool” model), and the 
other in which the individuals in a propagule are chosen at random from the 
entire metapopulation (the “migrant pool” model). It is clear that there is a 
continuous range of other possibilities but that these two represent the extremes. 

MODEL I 

Consider a diploid species with nonoverlapping generations and a single 
locus with two alleles, A and a, and assume that A is maintained in a source of 
migrants at a constant frequency x1 . Assume that there is a large number of 
local populations each of effective size N and each of which has a fraction m of its 
individuals replaced by migrants from the source. That is, in each generation 
before random mating takes place a fraction m of the gametes are replaced by 
gametes from the source and the frequency of A in those gametes is x, . There is 
assumed to be no variability associated with the migration process, either through 
the number of migrants or the allele frequency of the migrant group. These 
effects can be easily incorporated into the present model without altering the 
conclusions. Finally, assume that a fraction e, of the local populations goes 
extinct and the vacant sites are all recolonized in a manner to be specified. For 
simplicity there is also no variation in the number of local populations, and we 
will be assuming that there is effectively an infinite number of populations 
because we will not allow for any deviations from the expected distribution. 

Let x be the frequency of A in a single population and p(x, t) the frequency 
distribution of local populations of frequency x in generation t. Because there is 
no individual or group selection, it is sufficient to compute only the mean and 
variance of p(x, t). Furthermore, we will consider only the equilibrium mean and 
variance, although the solution to the transient problem can be found in the same 
manner. In the absence of selection, the mean of p(~, t) at equilibrium must be 

XI 9 the frequency of A in the source of migrants. To compute the change in the 
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variance, (~~2, due to drift and gene flow from the source, we can use the method 
of Crow and Kimura (1970, Sect. 9.2). For a population of frequency x before 
migration, the frequency after migration is 

x’ = (1 - m)x + mx, (‘1 

with the above assumption. After random mating, the variance in x’ is 
~‘(1 - x’)/2N. Since the expected values of both x and x’ are x1 , the variance 
in x’ between populations is simply the variance before mating plus the expecta- 
tion of ~‘(1 - x’)/2N. Thus, if we let GD denote the variance in .r after migration 
and random mating, then 

Gp = E[(x’ - x,)‘] + (1/2N) E[x’(l - x’)] 

which by direct substitution is found to be 

en* = (1 - m)?(l - 1/2N)a,’ + x1( 1 - x,)/2N, (3) 

which is the result in Crow and Kimura (1970, p. 440). After extinction and 
recolonization the variance must be o9 2 the equilibrium variance. Thus, , 

up2 = (1 - e,) uP2 + e0un2, 

where us2 is the variance among the newly founded populations and must be 
calculated for each model of the colonization process. Equation (4) is correct 
as long as there is no group selection that would cause the mean of the newly 
founded populations to be different from x, . 

The variance, u,s, depends on the manner in which the propagules that found 
the new populations are formed. In the propagule pool model, we assume that 
each estblished population produces a large number of propagules of size k 
from excess individuals each generation. With that assumption, the probability 
that a propagule derived from a population with frequency x has i A alleles is 
a binomial, B(i; 2k, x). In the propagule pool model there is no mixing of 
individuals from different propagules so each new population is derived from 
individuals arising in a single population. For each new site in which a population 
has gone extinct, a propagule is chosen at random from the propagule pool. Thus 
after the colonization stage, a fraction 1 - e, of the populations are of a size N 
and a fraction e, are of size k. For simplicity we assume that the newly founded 
populations grow to size N in the first generation after they are founded, and this 
assumption may not be unreasonable for species that experience frequent 
extinctions and recolonizations. Also we assume that the propagules are formed 
after mating and gene flow. 
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The variance in the newly founded populations is found by averaging B(i, 2K, X) 
over all .Y and then taking the variance to find 

u,‘? (1 - (1/2/z)) l5; + .v,( 1 - s,)/2k, (5) 

where a,S must be used because of the stage at which the propagules are assumed 
to be formed. Therefore, 

2 

x,(1 - s,) [il - 2) & + $$I 

UP 
l-(1 -+-)(I -m,Zjl-&)’ 

(6) 

WJI) 

which we find by solving (4) using (3) and (5). 
In the migrant pool model, which is the model that has been used in most 

previous analyses of group selection (Levins, 1970; Levin and Kilmer, 1974; 
Cohen and Eshel, 1976), each population is assumed to contribute to a large pool 
from which individuals are chosen to form propagules. Thus, in contrast to the 
propagule pool model, newly founded populations are derived from several 
existing populations. The frequency of A in the migrant pool is x, so the variance 
in the frequence of A in a large number of samples of 2k gametes from the 
migrant pool is x,( 1 - x,)/2k which is then ~,~a. We assume gametes rather than 
individuals are sampled to simplify the calculations and to permit the maximum 
mixing of individuals forming the propagules. We note that un2 for the migrant 
pool model is smaller than for the propagule pool model (Eq. (5)) because of the 
mixing of the invividuals from different populations before forming the 
propagules. Substituting in (2) we find 

2 x1( I - .q)[( 1 - 4JW + e&k1 
o’p z--- 

migr. 1 - (1 - e,)(l - rfz)z (1 - 1!2N) ’ (7) 

In comparing (6) and (7), there are two points worth noting. First, (7) is 
always greater than (6) if e, > 0 and k < N because the mixing of individuals 
during the formation of propagules in the migrant pool model reduces the 
between-population variance. In fact, (7) is less than the variance in the absence 
of extinctions (found by setting e, to zero in (6) or (7)) when 

k > N[l - (1 - VZ)‘(~ - 1/2N)]. (8) 

Therefore, the degree of mixing between the individuals derived from different 
populations can strongly affect the between-population variance. Second, the 
propagule size, k, is also important and, if N > k in the propagule pool model, 
then the extinction and recolonization process far outweighs the effect of genetic 
drift in determining the variance. 
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MODEL II 

The second model is the same as one analyzed by Maruyama (1970) and 
Latter (1973), except that the extinction and recolonization stage is added. For 
a diploid species, consider a single locus at which there is a mutation rate u per 
generation for new, selectively neutral alleles. Assume that there are 71 local 
populations each of effective size N and each of which exchanges a fraction m of 
its alleles with a random sample of alleles from the entire metapopulation. 
Following Maruyama (1970), we use the variablesf, andf, as the probabilities 
that two alleles chosen at random from the same population and from different 
populations are identical. 

The recursion formulas for f,, and fi are 

f0’ = (1 - 4” [(I - e,) [u (T& + (1 - &jr,) + (1 - al] L e,A,I 

and 

f, = (1 - 4” I(1 - 4 (1 -fi$J+)[b (& + (1 -&J.&j 

L 2nedl - 4 
n-l 

B 
1 

+ e&e0 - 1) 
n-1 B2/, 

where 

and 

b = 42 - 4 
(1 - e&z ’ 

2m(l - m) 
(1 - e& 

+ 

(9) 

(1 - Wl] 

(10) 

(11) 

(12) 

where we define A, as the probability of identity of two alleles chosen from 
a newly founded population, B, as the probability of identity given that one of 
the alleles is chosen from a newly founded population and the other from an 
existing population, and B, as the probability of identity given that both alleles 
are from newly founded populations. The prime indicates the value in the 
succeeding generation. The fraction e,, is assumed to be the same each generation. 
Equation (11) differs from the corresponding term in Maruyama’s paper (1970) 
because it takes into account the possibility that one of the alleles selected at 
random is not from a migrant and the other is from a migrant that returned to 
the same population. Latter (1973) is the first to point out that this additional 
term is necessary because migrant gametes or individuals can return to the 
population from which they are derived. 

We will assume that the propagules are derived only from populations that do 
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not go extinct, but that can be changed with no qualitative change in the results. 
As in Model I, the terms associated with the recolonization stage depend on how 
the propagules are assumed to be formed. 

In order to usejo andf, as the variables in this model, we must make a slight 
change in the way in which new populations are assumed to be founded. W’e 
assume after the propagule of size K founds a new population, it immediately 
undergoes random mating to produce a population of size N. This was not 
necessary in Model I, but it is in this model to guarantee that all populations are 
the same size at the time during each generation at which f0 and fi are defined. 
Then, f0 and fi are sufficient to specify the properties of the population. As a 
result, there are two sampling processes during the formation of a new popula- 
tion, the first when k individuals are chosen to make up the propagule and the 
second when those K individuals mate at random to form a population of size N. 
Both sampling processes must be kept in mind when calculating A, , B, , and 
B, . The individuals making up each propagule are assumed to be excess 
individuals in each population. 

In the propagule pool model, each propagule is formed from k individuals 
derived from a single population. The probability of identity in the propagule is 

1/2N + (1 - 1/2N)f” (13) 

because there are N possible parents of the individuals in the propagule. After 
random mating, the probability of identity in the newly founded population is 

4 = ;fl + & (1 - -&) + (1 - &](I - &) fu . (14) 

As mentioned above, there is an extra sampling stage introduced to simplify the 
analysis. To compute B, , we must account for the case in which the newly 
founded population is derived from the existing population and that in which it 
is not. Thus, 

B, _- 
(12 e&z ‘O + (l - &$Fjfi 

Similarly, to compute B, we must account for the cases in which both new 
populations are derived from the same and different populations. Therefore, 

We can find the equilibrium solution to (9) and (10) and the time-dependent 
solution for arbitrary values of the parameters by using the usual matrix methods. 
However, the results are complicated and not too enlightening. I will present 
only the equilibrium results for two ranges of parameters that are of some 
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biological interest. A convenient way to illustrate the effect of the colonization 
and extinction processes is to use n, , the “effective number” of alleles in the 
metapopulation, defined by 

line ET J = (l/n)f, + (1 - l/n)fl. (17) 

We can reasonably assume u < 1 and would most likely be using this sort of 
model when n > 1. Maruyama (1970) shows that, if m is small, then 

n, = 1 + 4nNu + nujm, (18) 

where terms of the order of magnitude of un or smaller are ignored. Equation (18) 
is still a valid approximation even though Maruyama’s equation must be altered 
to include the extra term in (11). Note in (18) that m is assumed to be small, but 
not necessarily the same order of magnitude as u, so that terms of order un are 
small relative to un/m. If we assume that both m and e, are small and of the same 
order of magnitude, then to the same degree of approximation as (18) we find 

n, = 1 + 4nNu 
( 

m 
1 + 

un 
m + e, m+e,. (19) 

From (19), we can see that when gene flow and local extinctions are relatively 
rare events, then the extinction recolonization process can considerably reduce 
the between-population variance as measured by ne . This seems to be the 
opposite from the result found in Model I that the between-population variance 
is increased by extinctions and recolonizations. This difference is due to the 
difference between the models. In Model I, the extinction and recolonization 
stage essentially introduces an additional drift term because of the sampling 
during the formation of propagules. This sampling does not affect the process 
that acts to reduce the between-population variance, the gene flow from the 
source. In Model II, the gene flow between the populations reduces the between- 
population variance and extinctions and recolonizations augment the gene flow. 
While the magnitude of that effect will depend on the way in which the pro- 
pagules are formed, its direction is necessarily the same. 

If e, is much larger than m, then the equilibrium solutions to (9) and (10) 
are simpler because, to O(m/eJ, we can set m = 0. Again solving for the effective 
number of alleles, we find 

ne=1+ 
2(1 - e,) un 
1 - (1 - ecJ2 ’ (20) 

where terms of the order of magnitude of m/e,, l/n, and II are dropped. We see 
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that the extinction and recolonization process can prevent the divergence of 
local populations even in the absence of gene flow. 

For the migrant pool model, the equations are similar to those for the propagule 
pool model. The only difference is in A, , the probability of identity in a newly 
founded population. The probability of identity in the migrant pool from which 
propagules are formed is 

which is the average taken over the populations that do not go extinct, and the 
number of parents of the migrant pool is Nn(l - es). Therefore, after 12 
individuals are chosen at random to make up a propagule and they undergo 
random mating to form the new population, the probability of identity is 

A, 1 + 1 1 = 
2k 

- 
2nN(l - e,) 4Nnk( 1 

As in the results for the propagule pool model, we assume u < 1 and n > 1, 
and first find the effective number of alleles when e, and m are small and of the 
same order of magnitude. We find 

ne --: 1 + 2Nnu 
t 

e, + 2m I nu 
1 e,fm ’ m+e, ’ (23) 

which is larger than (19), the comparable result for the propagule pool model. 
If e, > m, then we can find 

n-2 = 1 -1 
2unNe, + nu(1 - e,) 
E(l _ e, - e,N/k) ’ (24) 

where terms of order m, l/n, and u are ignored and where 

Erz 1 -(l -ed” 
21 - d 

Equation (24) is always larger than (20), the result from the propagule pool 

model. 
In each of these results the effective number of alleles, n, , is used as a con- 

venient measure of divergence between populations. A reduction in n, indicates a 
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reduction in between population variance. Other possible measures are fi or 

filfo , b ot o w tc s h f h’ h h ow the same pattern as ne in response to changes in e, . 
In fact for large 11, Tte * l/f1 . 

The above results show that the effect of extinctions and recolonizations on 
the genetic structure of a metapopulation consisting of a large number of local 
populations is complex and depends on the kind of model being analyzed. There 
are two consequences of the extinction and colonization process. The first is 
an additional sampling process similar to genetic drift and results from the 
sampling of individuals to form the propagules. This can be regarded as the 
“founder effect.” The second is an additional component to the gene flow 
between the local populations because the propagules are made up of individuals 
from one or more of the local populations. The direction and magnitude of the 
effect of the extinction and recolonization process depends on the role of genetic 
drift and gene flow in the model being considered. 

We have considered two extreme models of the formation of propagules. In 
the propagule pool model, all individuals making up a propagule are from the 
same population and in the migrant pool model, all individuals making up a 
propagule are drawn from a random sample from the metapopulation. The 
propagule pool model results in a much greater effect of the sampling of 
individuals to form the propagule. In the migrant pool model, the effect of the 
sampling is much less because of the mixing of individuals from the different 
populations. In Model I, the additional genetic drift due to this sampling 
outweighs the effect of the additional gene flow between local populations. 
Therefore, the propagule pool model results in greater differentiation of the 
local populations. The gene flow from the source is the mechanism acting to 
prevent the populations from differentiating, and that is not affected by the gene 
flow resulting from the colonization and extinction process. 

In Model II, the interaction between the mechanisms is different. The 
appearance of new mutations in each population increases the differentiation of 
local populations and the gene flow between the local populations acts to reduce 
local differentiation. Therefore, the additional gene flow resulting from the 
colonizations further reduces the extent of the local differentiation. The genetic 
drift within each population and the additional drift due to the formation of the 
propagules play a secondary role. Therefore, there is always less differentiation 
(as measured by the effective number of alleles) than in the absence of local 
extinctions. The propagule pool model is more effective than the migrant pool 
model in augmenting the effective gene flow between populations because the 
probability of identity by descent in a propagule derived from a single population 
is higher than in one derived from a larger number of populations. 



262 MONTGOMERY SLATKIN 

ACKNOWLEDGMENTS 

I thank M. J. Wade for helpful discussions of this subject and T. Nagylaki and the 
referees for important corrections and comments on an earlier draft of this paper. Financial 
support of this research was provided by NIH Grants No. ROl GM22523 and No. 
K04 GM001 18. 

REFERENCES 

COHEN, D., AND ESHEL, I. 1976. On the founder effect and the evolution of altruistic 
traits, Theor. Pop. Biol. 10, 276-302. 

CROW, J. F., AND KIMURA, M. 1970. “Introduction to Population Genetics Theory,” 
Harper and Row, New York. 

CROWELL, K. L. 1973. Experimental Zoogeography: introductions of mice onto small 
islands, Amer. Nat. 107, 535-558. 

KIMURA, M., AND CROW, J. F. 1964. The number of alleles that can be maintained in a 
finite population, Genetics 49, 725-738. 

LATTER, B. D. H. 1973. The island model of population differentiation: a general solution, 
Genetics 73, 147-157. 

LEVIN, B. A., AND KILMER, W. L. 1974. Interdemic selection and the evolution of altruism: 
a computer simulation study, Evolution 28, 527-545. 

LEVINS, R. 1970. Extinction, in “Some Mathematical Problems in Biology” (>I. Gersten- 
raber, Ed.), Vol. 2, pp. 75-108, Amer. Math. Sot., Providence, R. I. 

MARUYAMA, T. 1970. Effective number of alleles in a subdivided population, Theor. Pop. 
Biol. 1, 273-306. 

SIMBERLOFF, D. S., AND WILSON, E. 0. 1969. Experimental zoogeography of islands: the 
colonization of empty islands, Ecology 50, 278-296. 

SLATKIN, M., AND WADE, M. J. 1977. Group selection on a quantitative character, in 
preparation. 

WRIGHT, S. 1931. Evolution in Mendelian populations, Genetics 16, 97-159. 


