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The persistence of extensive variation in nature seems to stand against the most general principle of evolution by natural selection:

in antagonistic interactions, the stronger type is expected to replace the weaker. Game theory shows that, however, in contrast

to this intuitive expectation for interactions between two players, strategic considerations on fitness maximization in repeated

pairwise interactions between three players (truels) or more (N-person duels) lead to what can be dubbed “survival of the weakest”:

the weakest individual can have the highest fitness. A paradox arises: competitive skills cannot be improved by natural selection,

unless we assume mutations with strong effects or unless we assume that interactions are exclusively between two individuals. The

paradox disappears, however, with more realistic assumptions (a mixture of duels and truels; the attacked individual backfires; the

contest can end without a winner; defensive and offensive skills are correlated; players not directly involved in the contest suffer

collateral damage). An unexpected new result emerges: the weaker types can persist in a population in the absence of recurrent

mutations, migration, and fluctuating selection. Game theory and the analysis of N-person duels, therefore, help understand one

of the most enduring puzzles in evolutionary biology: the maintenance of variation under constant selection.
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THE DUEL: SURVIVAL OF THE FITTEST

The most general principle of evolution by natural selection is

what Darwin (1869) dubbed “survival of the fittest” (Spencer

1864): the stronger types in the struggle for survival and repro-

duction increase in frequency, thereby leading to the design we

see in nature. Although in certain cases selection can improve ro-

bustness (e.g., Wilke et al. 2001) or antirobustness (e.g., Archetti

2009) of genotypes at the expenses of fitness, it is understood

that if a stronger type has an advantage over a weaker type in

an antagonistic interaction it also has the highest probability of

surviving.

2Present address: Department of Business and Economics, Univer-

sity of Basel, Peter Merian-Weg 6, 4002 Basel, Switzerland.

Consider the duel as a model for antagonistic interactions.

Two individuals, A and B, shoot at each other, with accuracies

(probabilities to hit the opponent) a and b, respectively. If they

shoot at the same time and a > b, clearly A has a higher proba-

bility of winning the contest. Consider then a sequential, repeated

duel: at the beginning, and after each shot, who shoots next is

chosen at random: again clearly A has a higher probability of

winning the contest. There is nothing surprising here, but a prob-

lem arises: if selection is constant (a is always greater than b) the

stronger type A will eventually replace the weaker type B in the

population; selection erodes variation. What maintains variation

under constant selection is one of the most enduring puzzles of

population genetics (Barton and Turelli 1989; Charlesworth and

Hughes 1999; Barton and Keightley 2002).
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Game theory shows, however, that in contrast to this intuitive

expectation for interactions between two players, in duels between

three or more players another apparent paradox arises, which can

be dubbed “survival of the weakest.”

THE TRUEL: SURVIVAL OF THE WEAKEST

Consider a three-person version of the duel (a “truel”; Shubik

1954, 1964, 1982). Three individuals, A, B, and C, shoot at each

other with accuracies a, b, and c, respectively. At the beginning,

and after each shot, who shoots next is chosen at random among

the players still in the contest (being hit means quitting the game

with payoff 0, not necessarily being killed). Who will be the

most likely to win? The answer here is not so simple as in the

two-person duel; one must take a strategic decision: whom to

shoot at?

Suppose that C has been eliminated. With the same probabil-

ity (1/2) A or B will shoot next. The payoff for A can be calculated

as follows: if A shoots and hits the target B (which happens with

probability a) A’s payoff is 1; if B shoots and hits the target A

(which happens with probability b) A’s payoff is 0; if both miss

the target (which happens with probability 1 − a/2 − b/2), the

status quo is repeated. The probability that A will ultimately win

against B alone, therefore, is

PA(B) = a/2 + (1 − a/2 − b/2)PA(B),

which gives

PA(B) = a/(a+b).

Similarly, for each type X,Y ∈ {A,B,C} and probability x,y ∈
{a,b,c} the probability that X will ultimately win against Y in a

two-person duel is (Shubik 1954, 1964, 1982)

PX (Y ) = x/(x+y).

Suppose the players are ranked in skill by a > b > c and that these

values are common knowledge. Then, because the probability of

hitting the target does not depend on the target, whom to shoot at

first depends only on PX (Y); that is, on whom one prefers to face

in the two-person duel.

Which type (TX) should type X shoot at in the three-person

duel? It is easy to see that A would prefer to fight against C than

against B in a two-person duel, because PA(C) > PA(B); therefore A

should shoot at B first (TA = B). B would prefer to fight against

C than against A in a two-person duel, because PB(C) > PB(A);

therefore B should shoot at A first (TB = A). C would prefer

to fight against B than against A in a two-person duel, because

PC(B) > PC(A); therefore C should shoot at A first (TC = A). In

summary, in a three-person duel, the best strategy is to shoot at

the strongest opponent: if the three players are still in the game,

both B and C will shoot at A; A will shoot at B; nobody will shoot

at C (Shubik 1954, 1964, 1982).

Note that the model does not allow or predict the possibility

of “shooting in the air”; that is, of passing one’s turn. This could

be a sensible strategy in a different type of duel in which players

shoot in a predefined order (if C starts, e.g., and he hits A, then

B will shoot at C; if C hits B, then A will shoot at C; if C shoots

in the air, A will then shoot at B, and B will shoot at A, therefore

it is better for C to shoot in the air). In the model discussed here,

however (in which who shoots next is chosen at random), if C

hits A, C will have the payoff of a duel with B, which is always

greater than what C gets by shooting in the air (in which case the

status quo is repeated). Throughout this article, I will ignore the

possibility of “shooting in the air.”

We can write the payoff PX (Y,Z) of type X as the probability of

winning against Y and Z. Let us work out the example of PA(B,C).

With probability 1/3, A is the one who starts and with probability

a he hits the target (which, as we have seen, is B); if he hits the

target (which happens with probability a) he will eventually have

to face C, in which case his chance of winning is PA(C). B and C

also start with probability 1/3 each, and they hit the target (which,

as we have seen, is A) with probabilities b and c, respectively,

in which case the payoff for A is 0. With probability (1 − a/3 −
b/3 − c/3), instead, A will miss the target and so will B and C,

in which case the process is repeated. Therefore, the probability

that A will ultimately win against B and C in a three-person

duel is

PA(B,C) = (a/3)PA(C) + (b/3)0 + (c/3)0

+ (1 − a/3 − b/3 − c/3)PA(B,C)

and, in a similar way, for B against A and C, and for C against A

and B:

PB(A,C) = (a/3)0 + (b/3)PB(C) + (c/3)PB(C)

+ (1 − a/3 − b/3 − c/3)PB(A,C)

PC(A,B) = (a/3)PC(A) + (b/3)PC(B) + (c/3)PC(B)

+ (1 − a/3 − b/3 − c/3)PC(A,B)

Some algebra gives (Shubik 1954, 1964, 1982):

PA(B,C) = [a2]/[(a+b+c)(a+c)]

PB(A,C) = [b(a+c)]/[(a+b+c)(a+c)]

PC(A,B) = [c(2a+c)]/[(a+b+c)(a+c)].

An apparent paradox emerges: the weakest player can have

the highest probability of winning and the strongest player can
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SURVIVAL OF THE WEAKEST IN N-PERSON DUELS

have the lowest, unless the differences in skills are extremely

large; more specifically, the weakest player C has the highest

probability of winning if

c > a(
√

2 − 1)

c > b/2 − a +
√

(a2+b2/4).

For example, with a = 0.8, b = 0.6, and c = 0.4, we get PA(B,C) =
0.296, PB(A,C) = 0.333, PC(A,B) = 0.370. Note that what matters is

not the absolute value of the skills but their relative values. What

seems paradoxical (the weakest type can have the highest fitness)

is actually the result of rational, strategic considerations.

The three-person duel has been known since the beginnings

of game theory. Shubik (1954, 1964, 1982) used the model de-

scribed above to show that strategic interactions can lead to seem-

ingly paradoxical results. A similar game has been known for

a long time as a mathematical curiosity (Kinnaird 1946; Larsen

1948) and it has been discussed in political economy (Kilgour

1972, 1975, 1978; Kilgour and Brams 1997), where it has im-

plications for strategic voting in multiple-party, winner-take-all

elections.

Here I extend Shubik’s model to interactions in evolving pop-

ulations with multiple players, I generalize it to N-person duels,

and to situations with more realistic assumptions (the attacked

individual backfires; the contest ends without a winner; defensive

and offensive skills are correlated; players not directly involved

in the fight suffer collateral damage). This allows to apply the

logic of the truel not only to antagonistic interactions in shooting

contests, but also to more general fighting contests and to cases

in which the players compete indirectly.

Methods and Results
TRUELS IN EVOLVING POPULATIONS

Shubik’s truel assumes repeated pairwise interactions between

three different types. In a population, however, the players will

be chosen at random, with probabilities proportional to their fre-

quencies, which change over time. For each type X,Y,Z ∈ {A,B,C}
and skill x,y,z ∈ {a,b,c}, the probabilities PX (Y,Z) that X will win

against Y and Z in all possible truels are shown in Table 1.

The fitness of type X in a population, where X has frequency

fX and the other two types Y and Z have frequencies fY and fZ ,

respectively, is

WX = f 2
X PX (X ,X )+ f 2

Y PX (Y ,Y )+ f 2
Z PX (Z ,Z ) + 2 fX fY PX (X ,Y )

+ 2 fX fZ PX (X ,Z )+2 fY fZ PX (Y ,Z )

Stability of X requires that

PX (X,X ) > PY (X ,X )

and

PX (X ,X ) >PZ (X ,X )

It is easy to prove the following conditions for the stability

of each type:

A : a > 2b

B : a < 2b and b > 2c

C : a < 2c and b < 2c

Table 1. Payoffs in a population version of Shubik’s truel.

PA(B,C) (a/3)PA(C)+(b/3)0+(c/3)0+(1−a/3−b/3−c/3)PA(B,C)

PB(A,C) (a/3)0+(b/3)PB(C)+(c/3)PB(C)+(1−a/3−b/3−c/3)PB(A,C)

PC(A,B) (a/3)PC(A)+(b/3)PC(B)+(c/3)PC(B)+(1−a/3−b/3−c/3)PC(A,B)

PA(A,B) (a/3)PA(B)+(a/3)0+(b/3)(0+PA(B))/2+(1−2a/3−b/3)PA(A,B)

PA(A,C) (a/3)PA(C)+(a/3)0+(c/3)(0+PA(C))/2+(1−2a/3−c/3)PA(A,C)

PA(B,B) (a/3)PA(B)+2(b/3)0+(1−a/3−2b/3)PA(B,B)

PA(C,C) (a/3)PA(C)+2(c/3)0+(1−a/3−2c/3)PA(C,C)

PA(A,A) (a/3)(1/2)+2(a/3)(0+1/2)/2+(1−a)PA(A,A)

PB(B,A) 2(b/3)(1/2)+(a/3)(0+PB(A))/2+(1−a/3−2b/3)PB(B,A)

PB(B,C) (b/3)PB(C)+(b/3)0+(c/3)(0+PB(C))/2+(1−2b/3−c/3)PB(B,C)

PB(A,A) (b/3)PB(A)+2(a/3)PB(A)+(1−2a/3−b/3)PB(A,A)

PB(C,C) (b/3)PB(C)+2(c/3)0+(1−b/3−2c/3)PB(C,C)

PB(B,B) (b/3)(1/2)+2(b/3)(0+1/2)/2+(1−b)PB(B,B)

PC(B,C) 2(c/3)(1/2)+(b/3)(0+PC(B))/2+(1−b/3−2c/3)PC(B,C)

PC(A,C) 2(c/3)(1/2)+(a/3)(0+PC(A))/2+(1−a/3−2c/3)PC(A,C)

PC(A,A) (c/3)PC(A)+2(a/3)PC(A)+(1−2a/3−c/3)PC(A,A)

PC(B,B) (c/3)PC(B)+2(b/3)PC(B)+(1−2b/3−c/3)PC(B,B)

PC(C,C) (c/3)(1/2)+2(c/3)(0+1/2)/2+(1−c)PC(C,C)

EVOLUTION MARCH 2012 6 3 9
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Otherwise there is no equilibrium of pure types. Therefore, if

differences in skill are extremely large, either A (if both b and c

are much smaller than a) or B (if c is much smaller than a but b

is not) are stable. At intermediate values of b and c none of the

pure types is stable and the frequencies of the three types change

cyclically. If differences in skill are not extreme, however, only

type C, the weakest, is stable.

Thus, another related, apparent paradox arises in three-

person duels played in evolving populations: only mutants with

extremely higher competitive abilities can invade a population

fixed on a weaker type. This means that selection cannot lead

to a gradual improvement of competitive abilities in interac-

tions between more than two players. The logic of the theory

is indisputable, but the result is disturbing: either we assume

that competition occurs exclusively in two-person interactions

(which seems unlikely), or we accept that only mutations with

strong effects have an actual impact on evolutionary change

(which contrasts with the standard view of gradual evolutionary

change).

Is there a solution to the paradox? In the next sections I

will show how more realistic assumptions can lead not only to a

solution, but also to understand how variation persists in nature

under constant selection.

A MIXTURE OF DUELS AND TRUELS

If the frequency of truels is τ (<1) and all other interactions are

two-person duels, the payoff of type X in a population where it

has frequency fX and the other two types Y and Z have frequencies

fY and fZ , respectively, is

(1 − τ)( fX PX (X ) + fY PX (Y ) + fZ PX (Z ) + )τWX .

Stability of X requires that

(1 − τ)PX (X ) + τPX (X X ) > (1 − τ)PY (X ) + τPY (X X )

and

(1 − τ)PX (X ) + τPX (X X ) > (1 − τ)PZ (X ) + τPZ (X X )

The conditions for the stability of each type when τ < 1 are

A: a > 2b or [a < 2b and τ < 6a/(a+b) − 3]

B: a < 2b and (3+τ)c < b(3 − τ) and τ >
3(2b2 − a2 − ab)

a2 + 2b2 − 9ab

C: b < 2c and a < 2c and τ >
3(2c2 − a2 − ac)

a2 + 2c2 − 9ac
,

Again, unless the differences in skill are extreme, the weakest

type C is the only stable type irrespective of skills or τ, and will

go to fixation; otherwise B or C will go to fixation, or the three

types will coexist in a cyclical polymorphism (Fig. 1). Variation

can persist at intermediate values of τ and skills without any

kind of fluctuating selection, recurrent mutations, or migration:

fluctuations in the frequencies of the three types depend entirely

on the strategic nature of the interactions, under constant selection.

Note that the period of the oscillations can be very long, in the

order of thousands of generations (Fig. 1), therefore this could

look like a stable polymorphism in short-term data from natural

populations.

LIMITED TRUELS: CONTESTS CAN END WITHOUT

A WINNER

In Shubik’s truel, the three players fight repeatedly until only one

player is left. In a limited truel, instead, I assume that at any time

there is a probability that the interaction ends and there is no

winner at all (it is also possible to assume that if an interaction

ends without a winner, the players still in the contest share the

reward of the contest, but results are not very different in this

case and will not be shown here). The assumptions of the model

are the same as in Shubik’s truel, except that after each shot, the

interaction goes on with probability ω < 1. In a duel, therefore,

for each type X,Y ∈ {A,B,C} and probability x,y ∈ {a,b,c}:

PX (Y ) = x/2 + (1 − x/2 − y/2)ωPX (Y ),

that is,

PX (Y ) = x/[2(1 − ω) + ω(x+y)].

The payoffs of the truel can be obtained simply by multiply-

ing by ω the expressions for PX (Y,Z) in Table 1.

When interactions have a probability (ω < 1) of continuing

after each shot, C goes to fixation if all interactions are truels

(τ = 1). With a combination of duels and truels (τ < 1), three

further types of dynamics are possible, besides the four (stability

of A, B, or C, cyclical polymorphisms) we have already seen

in the previous section. Both A and B, or both B and C can be

stable, or even all three types depending on the parameters. The

conditions for the stability of each type are too cumbersome to

be reported here; a graphical representation of the results is given

in Figure 2. Which equilibrium will be achieved depends on the

initial frequencies of the three types.

DEFENSIVE TRUELS: DEFENSIVE AND OFFENSIVE

SKILLS ARE CORRELATED

Another unrealistic assumption in Shubik’s truel is the fact that

the probability of hitting the target depends only on the skill of

the shooter and not on the skill of the target. In a defensive truel

6 4 0 EVOLUTION MARCH 2012
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SURVIVAL OF THE WEAKEST IN N-PERSON DUELS

Figure 1. Equilibria and evolutionary dynamics of 2/3-person duels. The top plots, drawn for a = 1, b = 0.9, c = 0.8 (the skills of the three

players A, B, and C) and four different values of τ (the proportion of three-person duels: 0.1, 0.17, 0.25, and 0.4), show the direction of

change of the frequency of A (the strongest player) and C (the weakest player) (fA and fC, respectively; fB = 1 − fA − fC); in each region

either fA or fC or both increase; the black circles show the stable equilibria. The bars show which type goes to fixation, for different

values of skills b and c (a = 1; ε = 0.0001) as a function of τ; when no type is stable the population fluctuates between the three types.

The bottom plots are also drawn for a = 1, b = 0.9, c = 0.8 and for two different values of τ for which the dynamics is cyclical (τ = 0.2

and 0.3), and show how fA, fB, and fC change over time.

instead I assume that a player with strong offensive skills may

also have strong defensive skills. The assumptions of the model

are the same as in Shubik’s truel, except that the probability that

type X hits target Y is xY = x−δy, where δy is a measure of

the defensive skills of Y . I assume that the correlation between

offensive and defensive skills δis the same for all types, and that

δ is small enough to keep xY > 0. In a duel, therefore, for each

type X,Y ∈ {A,B,C} and probability x,y ∈ {a,b,c}

PX (Y )=xY /(xY +yX )

and

PA(B,C) = (aB/3)PA(C) + (bA/3)0 + (cA/3)0

+ (1 − aB/3 − bA/3 − cA/3)PA(B,C)

PB(A,C) = (aB/3)0 + (bA/3)PB(C)+(cA/3)PB(C)

+ (1 − aB/3 − bA/3 − cA/3)PB(A,C)

PC(A,B) = (aB/3)PC(A)+(bA/3)PC(B) + (cA/3)PC(B)

+ (1 − aB/3 − bA/3 − cA/3)PC(A,B)

The payoffs for all other possible truels in a population are

shown in Table 2.

When defensive skills are correlated with offensive skills,

most cases have either one equilibrium or a cyclical dynamics;

only for a very limited parameter range bistability is possible

(both A and B are stable; Fig. 2).

INTERFERENCE TRUELS: COLLATERAL DAMAGE

Shubik’s truel assumes a physical contest or any antagonistic

interaction in which it is possible to direct one’s competitive skills

exclusively toward one other opponent. In this section, I extend

the model to antagonistic interactions in which competition is

indirect, for example, competition for shared resources. Consider

three individuals competing for the same resource: they do not

EVOLUTION MARCH 2012 6 4 1
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MARCO ARCHETTI

Figure 2. Equilibria and evolutionary dynamics of limited truels, defensive truels, and interference truels. The top plots show, for different

values of τ (the proportion of three-person duels) and ω (the probability of continuing the interaction after each shot) corresponding to

different types of equilibrium (indicated by the one to three letter code on the top right of each panel, each corresponding to one of the

dots indicated by the same letters in the first of the bottom plots), the direction of change of the frequencies A (the strongest player)

and C (the weakest player) (fA and fC, respectively; fB = 1 − fA − fC); in each region either fA or fC or both increase; the black circles

show the stable equilibria. The skills of the three players A, B, and C are a = 1, b = 0.8, c = 0.6, respectively. The bottom plots show, for

different values of b and c (a = 1), the type of equilibria as a function of τ and one other parameter: ω (the probability of continuing the

interaction after each shot), δ (the correlation between defensive and offensive ability), or ϑ (amount of collateral damage). Each black

dot in the upper left plot shows the parameters used in the top panel associated with each equilibrium type.

6 4 2 EVOLUTION MARCH 2012
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SURVIVAL OF THE WEAKEST IN N-PERSON DUELS

Table 2. Payoffs of the defensive truels.

PA(B,C) (aB/3)PA(C)+(bA/3)0+(cA/3)0+(1−aB/3−bA/3−cA/3)PA(B,C)

PB(A,C) (aB/3)0+(bA/3)PB(C)+(cA/3)PB(C)+(1−aB/3−bA/3−cA/3)PB(A,C)

PC(A,B) (aB/3)PC(A)+(bA/3)PC(B)+(cA/3)PC(B)+(1−aB/3−bA/3−cA/3)PC(A,B)

PA(A,B) (aA/3)PA(B)+(aA/3)0+(bA/3)(0+PA(B))/2+(1−2aA/3−bA/3)PA(A,B)

PA(A,C) (aA/3)PA(C)+(aA/3)0+(cA/3)(0+PA(C))/2+(1−2aA/3−cA/3)PA(A,C)

PA(B,B) (aB/3)PA(B)+2(bA/3)0+(1−aB/3−2bA/3)PA(B,B)

PA(C,C) (aC/3)PA(C)+2(cA/3)0+(1−aC/3−2cA/3)PA(C,C)

PA(A,A) (aA/3)(1/2)+2(aA/3)(0 + 1/2)/2+(1−aA)PA(A,A)

PB(B,A) 2(bA/3)(1/2)+(aB/3)(0+PB(A))/2+(1−aB/3−2bA/3)PB(B,A)

PB(B,C) (bB/3)PB(C)+(bB/3)0+(cB/3)(0+PB(C))/2+(1−2bB/3−cB/3)PB(B,C)

PB(A,A) (bA/3)PB(A)+2(aA/3)PB(A)+(1−2aA/3−bA/3)PB(A,A)

PB(C,C) (bC/3)PB(C)+2(cB/3)0+(1−bC/3−2cB/3)PB(C,C)

PB(B,B) (bB/3)(1/2)+2(bB/3)(0 + 1/2)/2+(1−bB)PB(B,B)

PC(B,C) 2(cB/3)(1/2)+(bC/3)(0+PC(B))/2+(1−bC/3−2cB/3)PC(B,C)

PC(A,C) 2(cA/3)(1/2)+(aC/3)(0+PC(A))/2+(1−aC/3−2cA/3)PC(A,C)

PC(A,A) (cA/3)PC(A)+2(aA/3)PC(A)+(1−2aA/3−cA/3)PC(A,A)

PC(B,B) (cB/3)PC(B)+2(bB/3)PC(B)+(1−2bB/3−cB/3)PC(B,B)

PC(C,C) (cC/3)(1/2)+2(cC/3)(0 + 1/2)/2+(1−cC)PC(C,C)

shoot at each other, or fight physically; instead, they take actions

that interfere with the actions of both other players. Although

one cannot decide to target exclusively one of the other players,

one can bias this action to interfere preferentially with one of the

two. We can think of this as a duel with weapons that produce

collateral damage, measured by the parameter ϑ (0 ≤ ϑ ≤ 0.5; if

ϑ = 0 the effects of shooting are entirely paid by the target, as in

Shubik’s truel; if ϑ = 0.5 the effects of shooting are paid equally

by the target and the nontarget).

Suppose that C has been eliminated. With the same proba-

bility (1/2) A or B will shoot next. Consider the payoff for A: if

A shoots and hits the target B, which happens with probability

(1 − ϑ)a, A’s payoff is 1; if B shoots and hits the target A, which

happens with probability (1 − ϑ)b, A’s payoff is 0; if both miss

the target, which happens with probability 1 − (1 − ϑ)a/2 −
(1 − ϑ)b/2, the status quo is repeated. The probability that A will

ultimately win against B alone, therefore, is PA(B) = (1 − ϑ)a/2 +
[1 − (1 −ϑ)a/2 − (1 −ϑ)b/2]PA(B), which gives PA(B) = a/(a + b),

as in Shubik’s truel. In general, therefore, PX (Y) = x/(x + y), ir-

respective of ϑ; this is clear, because collateral damage has no

consequences in a two-person duel, it only reduces accuracies for

both players.

In the truel, however, ϑ does affect payoffs. Consider the

payoff for A. With probability 1/3, A shoots: he hits his favorite

target (which is B) with probability a(1 − ϑ), in which case A’s

payoff is PA(C) (because he faces C in the eventual duel); but

because ϑ > 0, A hits C (not his favorite target) with probability

aϑ, in which case A’s payoff is PA(B) (because he faces B in

the eventual duel). With probability 1/3, B shoots: he hits his

favorite target (which is A) with probability b(1 − ϑ), in which

case A’s payoff is 0; but because ϑ > 0, B hits C (not his favorite

target) with probability b ϑ, in which case A’s payoff is PA(B)

(because he faces B in the eventual duel). With probability 1/3,

it is C that shoots; he hits his favorite target (which is A) with

probability c (1 − ϑ), in which case A’s payoff is 0; but because

ϑ > 0, C hits B (not his favorite target) with probability c ϑ, in

which case A’s payoff is PA(C) (because he faces C in the eventual

duel). With probability (1 − a/3 − b/3 − c/3) nobody is hit and

the process is repeated. This yields

PA(B,C) = (a/3)[(1−ϑ)PA(C) + ϑPA(B)] + (b/3)[(1−ϑ)0 + ϑPA(B)]

+ (c/3)[(1 − ϑ)0 + ϑPA(C)]

+ (1 − a/3 − b/3 − c/3)PA(B,C)

Similarly,

PB(A,C) = (a/3)[(1−ϑ)0 + ϑPB(A)] + (b/3)[(1−ϑ)PB(C) + ϑPB(A)]

+ (c/3)[(1 − ϑ)PB(C) + ϑ0]

+ (1 − a/3 − b/3 − c/3)PB(A,C)

PC(A,B) = (a/3)[(1 − ϑ)PC(A) + ϑ0] + (b/3)[(1 − ϑ)PC(B) + ϑ0]

+ (c/3)[(1 − ϑ)PC(B) + ϑPC(A)]

+ (1 − a/3 − b/3 − c/3)PC(A,B)

That is,

PA(B,C) = [a(a+2cϑ)]/[(a+b+c)(a+c)]

PB(A,C)=b/(a+b+c)
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MARCO ARCHETTI

Table 3. Payoffs of the interference truels.

PA(B,C) (a/3)[(1−ϑ)PA(C)+ϑPA(B)]+(b/3)[(1−ϑ)0+ϑPA(B)]+(c/3)[(1−ϑ)0+ϑPA(C)]+(1−a/3−b/3−c/3)PA(B,C)

PB(A,C) (a/3)[(1−ϑ)0+ϑPB(A)]+(b/3)[(1−ϑ)PB(C)+ϑPB(A)]+(c/3)[(1−ϑ)PB(C)+ϑ0]+(1−a/3−b/3−c/3)PB(A,C)

PC(A,B) (a/3)[(1−ϑ)PC(A)+ϑ0]+(b/3)[(1−ϑ)PC(B)+ϑ0]+(c/3)[(1−ϑ)PC(B)+ϑPC(A)]+(1−a/3−b/3−c/3)PC(A,B)

PA(A,B) (a/3)[(1−ϑ)PA(B)+ϑ/2]+(a/3)[(1−ϑ)0+ϑ/2]+(b/3)(0+PA(B))/2+(1−2a/3−b/3)PA(A,B)

PA(A,C) (a/3)[(1−ϑ)PA(C)+ϑ/2]+(a/3)[(1−ϑ)0+ϑ/2]+(c/3)(0+PA(C))/2+(1−2a/3−c/3)PA(A,C)

PA(B,B) (a/3)PA(B)+2(b/3)[(1−ϑ)0+ϑPA(B)]+(1−a/3−2b/3)PA(B,B)

PA(C,C) (a/3)PA(C)+2(c/3)[(1−ϑ)0+ϑPA(C)]+(1−a/3−2c/3)PA(C,C)

PA(A,A) 1/3
PB(B,A) (b/3)[(1−ϑ)/2+ϑPB(A)]+(b/3)[(1−ϑ)/2+ϑ0]+(a/3)(0+PB(A))/2+(1−a/3−2b/3)PB(B,A)

PB(B,C) (b/3)[(1−ϑ)PB(C)+ϑ/2]+(b/3)[(1−ϑ)0+ϑ/2]+(c/3)(0+PB(C))/2+(1−2b/3−c/3)PB(B,C)

PB(A,A) (b/3)PB(A)+2(a/3)[(1−ϑ)PB(A)+ϑ0]+(1−2a/3−b/3)PB(A,A)

PB(C,C) (b/3)PB(C)+2(c/3)[(1−ϑ)0+ϑPB(C)]+(1−b/3−2c/3)PB(C,C)

PB(B,B) 1/3
PC(B,C) (c/3)[(1−ϑ)/2+ϑPC(B)]+(c/3)[(1−ϑ)/2+ϑ0]+(b/3)(0+PC(B))/2+(1−b/3−2c/3)PC(B,C)

PC(A,C) (c/3)[(1−ϑ)/2+ϑPC(A)]+(c/3)[(1−ϑ)/2+ϑ0]+(a/3)(0+PC(A))/2+(1−a/3−2c/3)PC(A,C)

PC(A,A) (c/3)PC(A)+2(a/3)[(1−ϑ)PC(A)+ϑ0]+(1−2a/3−c/3)PC(A,A)

PC(B,B) (c/3)PC(B)+2(b/3)[(1−ϑ)PC(B)+ϑ0]+(1−2b/3−c/3)PC(B,B)

PC(C,C) 1/3

PC(A,B)=c[c − 2a(ϑ − 1)]/[(a+b+c)(a+c)].

The payoffs for all possible truels in a population are shown

in Table 3.

With collateral damage, besides bistability and cyclical dy-

namics, tristability is also possible, in particular at low values of

τ and high values of ϑ (nonnegligible collateral damage for the

third type; Fig. 2).

TRUELS WITH BACKFIRE: IMMEDIATE RETALIATION

The most unrealistic feature of Shubik’s truel applied to animal

behavior is that the probability of winning a fight, in the model,

does not depend on the skill of the attacked individual. In real

contests, instead, attacking a strong individual is likely to be more

costly than attacking a weak individual if the attacked individual

can immediately backfire (as he is attacked). Here I take into

account this backfire effect. In a backfire truel, “shooting” at one

player simply means choosing whom to fight with: after X has

chosen his opponent Y, they attack each other, and they can both

hit each other in the same turn.

If σ is the degree of immediate backfire by the target Y when

attacked by X (if σ = 1, Y backfires efficiently, hitting X with the

same probability y with which Y would hit X had Y shot first;

if σ = 0, Y does not backfire at all and the model is equivalent

to Shubik’s truel), for each type X,Y ∈ {A,B,C} and probability

x,y ∈ {a,b,c}, in a duel between X and Y

PX (Y ) = σ [x(1 − y) + (1 − x)(1 − y)PX (Y )]

+ (1 − σ)[x/2 + (1 − x/2 − y/2)PX(Y)]

because if the target Y backfires, the shooter X has payoff 1 if

he hits the target (Y) but only if Y misses the target (X), whereas

the status quo is repeated if both miss, and X has payoff 0 if Y

hits the target; if the target does not react, as in Shubik’s model,

X has a payoff 1 when he shoots first and hits the target, 0 when

Y shoots first and hits the target, and the status quo is repeated if

both miss.

Whom to shoot at first still depends on PX (Y) but now this

must be conditional on not being hit by the backfire of the target.

The payoff A gets for shooting at B first is

PA|[TA= B] = (1 − σ b){a PA(C)+(1 − a)PA|[TA= B]}

whereas the payoff for shooting at C first is

PA|[TA= C] = (1 − σ c){a PA(B)+(1 − a)PA|[TA= C]}

because with probability σ y the target Y backfires successfully

and the shooter’s payoff is 0; with probability (1 − σy), the target

does not backfire (or does but unsuccessfully) and in this case the

shooter will go on to face the other player if he hits the target;

if he does not, the status quo is repeated. It is easy to verify that

PA|[TA = B] > PA|[TA = C] if σ > 0; that is, it is still the

best choice for A to shoot at B first (and, with the same logic,

for B and C to shoot at A first); as σ increases the advantage of

shooting at one’s preferred target decreases, and when σ = 1 (the

target backfires perfectly) a player is indifferent about shooting

at either opponent first. Even a very slight advantage for shooting

first, due, for example, to the fact that the target is not ready to

backfire, therefore, still leads to the same shooting preferences as

in Shubik’s model (A will prefer to shoot at B first, and both B

and C will prefer to shoot at A first).
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SURVIVAL OF THE WEAKEST IN N-PERSON DUELS

Table 4. Payoffs of the backfire truels.

PA(B,C) (2/3){a[(1−b)PA(C)]+(1−a)[(1−b)PA(B,C)]}+(1/3){a[(1−c)PA(B)]+(1−a)[(1−c)PA(B,C)]}
PB(A,C) (2/3)(1−a)[bPB(C)+(1−b)PB(A,C)]+(1/3){a[c+(1−c)PB(A)]+(1−a)[cPB(C)+(1−c)PB(A,C)]}
PC(A,B) (2/3){a[b+(1−b)PC(A)]+(1−a)[bPC(B)+(1−b)PC(A,B)]}+(1/3)(1−a)[cPC(B)+(1−c)PC(A,B)]
PA(A,B) (2/3){a[(1−a)PA(B)]+(1−a)[(1−a)PA(A,B)]}+(1/6){a[(1−b)PA(A)]+(1−a)[(1−b)PA(A,B)]}

+(1/6){a[b+(1−b)PA(A)]+(1−a)[bPA(B)+(1−b)PA(A,B)]}
PA(A,C) (2/3){a[(1−a)PA(C)]+(1−a)[(1−a)PA(A,C)]}+(1/6){a[(1−c)PA(A)]+(1−a)[(1−c)PA(A,C)]}

+(1/6){a[c+(1−c)PA(A)]+(1−a)[cPA(C)+(1−c)PA(A,C)]}
PB(B,C) (2/3){b[(1−b)PB(C)]+(1−b)[(1−b)PB(B,C)]}+(1/6){b[(1−c)PB(B)]+(1−b)[(1−c)PB(B,C)]}

+(1/6){b[c+(1−c)PB(B)]+(1−b)[cPB(C)+(1−c)PB(B,C)]}
PB(B,A) (1/2){b[(1−a)PB(B)]+(1−b)[(1−a)PB(B,A)]}+(1/2){b[a+(1−a)PB(B)]+(1−b)[aPB(A)+(1−a)PB(B,A)]}
PC(C,A) (1/2){c[(1−a)PC(C)]+(1−c)[(1−a)PC(C,A)]}+(1/2){c[a+(1−a)PC(C)]+(1−c)[aPC(A)+(1−a)PC(C,A)]}
PC(C,B) (1/2){c[(1−b)PC(C)]+(1−c)[(1−b)PC(C,B)]}+(1/2){c[b+(1−b)PC(C)]+(1−c)[bPC(B)+(1−b)PC(C,B)]}
PA(B,B) a(1−b)PA(B)+(1−a)(1−b)PA(B,B)

PA(C,C) a(1−c)PA(C)+(1−a)(1−c)PA(C,C)

PB(C,C) b(1−c)PB(C)+(1−b)(1−c)PB(C,C)

PB(A,A) (2/3){a[a+(1−a)PB(A)]+(1−a)[aPB(A)+(1−a)PB(A,A)]}+(1/3)[b(1−a)PB(A)+(1−b)(1−a)PB(A,A)]
PC(A,A) (2/3){a[a+(1−a)PC(A)]+(1−a)[aPC(A)+(1−a)PC(A,A)]}+(1/3)[c(1−a)PC(A)+(1−c)(1−a)PC(A,A)]
PC(B,B) (2/3){b[b+(1−b)PC(B)]+(1−b)[bPC(B)+(1−b)PC(B,B)]}+(1/3)[c(1−b)PC(B)+(1−c)(1−b)PC(B,B)]
PA(A,A) (2/3){a(1−a)PA(A)+(1−a)(1−a)PA(A,A)}+(1/3){a[a+(1−a)PA(A)]+(1−a)[aPA(A)+(1−a)PB(A,A)]}
PB(B,B) (2/3){b(1−b)PB(B)+(1−b)(1−b)PB(B,B)}+(1/3){b[b+(1−b)PB(B)]+(1−b)[bPB(B)+(1−b)PB(B,B)]}
PC(C,C) (2/3){c(1−c)PC(C)+(1−c)(1−c)PC(C,C)}+(1/3){c[c+(1−c)PC(C)]+(1−c)[cPC(C)+(1−c)PC(C,C)]}

Now, however, because one suffers higher immediate dam-

age from shooting at a stronger opponent, it is not obvious that

the result will be the same as in Shubik’s model. A strong oppo-

nent will backfire more than a weaker opponent, which clearly is

detrimental for weak types—an effect that is absent in Shubik’s

model; on the other hand, now one’s opponents also backfire at

each other, which may give an advantage to the weakest player.

Consider C; the immediate result of shooting at A now will be

worse than in Shubik’s model, because A backfires more strongly

than B; however, now A and B also backfire at each other, which

gives a higher payoff to C.

In what follows, I assume σ ≈ 1 (efficient backfire). We

can write the payoff PX (Y,Z) as in Shubik’s truel. Let us work out

the example of PA(B,C). With probability 1/3, A starts and picks

up a fight with B; with probability 1/3, B starts and picks up a

fight with A; with probability 1/3, C starts and picks up a fight

with A. In the first case, A’s payoff is 0 with probability b; A

hits B and B does not hit A with probability (1 − b)a, in which

case A’s payoff is PA(C); with probability (1 − a)(1 − b) the

status quo is repeated. The second case is equivalent. In the third

case, A’s payoff is 0 with probability c; A hits C and C does

not hit A with probability (1 − c)a, in which case A’s payoff is

PA(B); with probability (1 − a)(1 − c) the status quo is repeated.

Therefore,

PA(B,C) = (2/3){a[(1 − b)PA(C)] + (1 − a)[(1 − b)PA(B,C)]}
+ (1/3){a[(1 − c)PA(B)]

+ (1 − a)[(1 − c)PA(B,C)]}

PB(A,C) can be derived in a similar way. In a fight between A

and B (which happens 2/3 times) B’s payoff is 0 with probability

a; B hits A and A does not hit B with probability (1 − a)b, in which

case B’s payoff is PB(C); with probability (1 − a)(1 − b) the status

quo is repeated. In a fight between C and A (which happens with

probability 1/3), B’s payoff is 1 if A and C hit each other, which

happens with probability ac; it is PB(C) if only A hits C and PB(A)

if only C hits A; the status quo is repeated if both A and C miss.

Therefore,

PB(A,C) = (2/3)(1 − a)[bPB(C) + (1 − b)PB(A,C)]

+ (1/3){a[c+(1 − c)PB(A)]

+ (1 − a)[cPB(C)+(1 − c)PB(A,C)]}
With a similar logic it is easy to derive

PC(A,B) = (2/3){a[b+(1 − b)PC(A)]

+ (1 − a)[bPC(B) + (1 − b)PC(A,B)]}
+ (1/3)(1 − a)[cPC(B) + (1 − c)PC(A,B)]

and the payoffs for all possible truels (Table 4).

The apparent paradox observed in Shubik’s truel persists

even in backfire truels: the weakest player can have the highest

probability of winning and the strongest player can have the low-

est, unless the differences in skills are extreme. In fact, if skills

are high, the “survival of the weakest” effect occurs for an even

larger parameter range; for example, with a = 0.9 and b = 0.5, if

c is as low as 0.25 we still observe the “survival of the weakest”;

with a = 0.8, b = 0.6, and c = 0.4, we get PA(B,C) = 0.190,

EVOLUTION MARCH 2012 6 4 5
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MARCO ARCHETTI

Figure 3. Equilibria and evolutionary dynamics of backfire truels. For different values of a, b, and c (the skills of the three players A,

B, and C), each plot shows the direction of change of the frequencies of A (the strongest player) and C (the weakest player) (fA and

fC, respectively; fB = 1 − fA − fC); in each region either fA or fC or both increase; the black circles show the stable equilibria; τ (the

proportion of three-person duels) = 1.

PB(A,C) = 0.196, PC(A,B) = 0.399; with a = 0.1, b = 0.08, c =
0.065, we get PA(B,C) = 0.315, PB(A,C) = 0.306, PC(A,B) = 0.339.

Note that here absolute skills matter, rather than just relative skills

as in Shubik’s truel. The “survival of the weakest” in backfire tru-

els might seems even less intuitive than in Shubik’s truel, because

the weakest individual has a higher direct disadvantage in fights

with any other opponent. Remember, however, that the “survival

of the weakest” effect is due to the fact that the other two types

(the average and the strongest) preferentially fight against each

other and that this gives an indirect advantage to the weakest

type; in backfire truels this indirect advantage to the weakest

type can increase because the other two types backfire at each

other.

The possible combinations of skills are so many that it is

difficult to classify the results for all of them. Some relevant

examples are shown in Figure 3. The most important result to
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SURVIVAL OF THE WEAKEST IN N-PERSON DUELS

point out, which is absent in the models that we have seen so far,

is the possibility of a stable polymorphism of two or even three

types.

N-PERSON DUELS

An obvious extension of the theory of three-person duels is the

study of N-person duels. This section extends Shubik’s truel to

four and more players.

In a four-person duel, player X should shoot at the opponent

whose disappearance would confer X the highest payoff in the

eventual three-person duel. In general, this depends on the com-

binations of the skills of the players. The possible combinations

are too many to lead to any practical result unless we make some

simplifying assumption. Let us assume, therefore, we are in the

parameter region in which the most likely winners in the three-

person duel are, in descending order, the weakest, the average,

and finally the strongest (as we have seen, this requires only that

the differences in skills are not extreme).

Therefore, in the four-person duel player X should chose to

shoot at the player whose elimination would make X the weakest

player in the three-person duel. If this is not possible, X should

shoot at the type whose elimination would make X the average

player in the three-person duel. So whom should each type shoot

at in the four-person duel?

A can never become the average nor the weakest player in

the three-person duel, because

if TA = B : PA,(C,D) = [a2]/[(a+c+d)(a+d)];

if TA = C : PA,(B,D) = [a2]/[(a+b+d)(a+d)];

if TA = D : PA,(B,C) = [a2]/[(a+b+c)(a+c)].

Because PA,(C,D) is the highest possible payoff, A will shoot at B.

B can never become the weakest player in the three-person

duel, because

if TB = A : PB,(C,D) = [b2]/[(b+c+d)(b+d)];

if TB = C : PB,(A,D) = [b(a+d)]/[(a+b+d)(a+d)];

if TB = D : PB,(A,C) = [b(a+c)]/[(a+b+c)(a+c)].

B can become the strongest player (which is the worst option) in

the three-person duel if he hits A; if he hits D or C, he becomes

the average player in the three-person duel; but if he hits C, the

weakest player in the three-person duel is weaker (D instead of

C), which is better for the average type in the three-person duel

(because PB,(A,D) > PB,(A,C)). Therefore, B will shoot at C.

C remains the weakest in the three-person duel (which is the

best option) if he hits D:

if TC = A : PC,(B,D) = [c(b+d)]/[(b+c+d)(b+d)];

if TC = B : PC,(A,D) = [c(a+d)]/[(a+c+d)(a+d)];

if TC = D : PC,(A,B) = [c(2a+c)]/[(a+b+c)(a+c)].

Therefore, C will shoot at D.

D would prefer to shoot at B than at C; and would prefer to

shoot at A than at B (both would remain anyway the strongest

players, so it is better to eliminate the stronger of the two):

if TD = A : PD,(B,C) = [d(2b+d)]/[(b+c+d)(b+d)];

if TD = B : PD,(A,C) = [d(2a+d)]/[(a+c+d)(a+d)];

if TD = C : PD,(A,B) = [d(2a+d)]/[(a+b+d)(a+d)].

Therefore, D will shoot at A.

The rule that emerges is to shoot at the type immediately

weaker than oneself , unless one is the weakest type, in which

case he should shoot at the strongest type. Note that the rule that

applies to the three-person duel is a degenerate version of this: A

shoots at B, and C shoots at A; B, however, does not shoot at C

(as he should according to the general rule) in a three-person duel

because we are one step away from a two-person duel, in which

he prefers to face C than A.

The probabilities of winning the four-person duel, therefore, are

[PA,(B,C,D) = (a/4)PA(C,D) + (b/4)PA(B,D) + (c/4)PA(B,C)

+ (d/4)0 + (1 − a/4 − b/4 − c/4 − d/4)PA,(B,C,D)

PB,(A,C,D) = (a/4)0 + (b/4)PB(A,D) + (c/4)PB(A,C)

+ (d/4)PB(C,D)

+ (1 − a/4 − b/4 − c/4 − d/4)PB,(A,C,D)

PC,(A,B,D) = (a/4)PC,(A,D) + (b/4)0 + (c/4)PC,(A,B)

+(d/4)PC,(B,D)

+ (1 − a/4 − b/4 − c/4 − d/4)PC,(A,B,D)

PD,(A,B,C) = (a/4)PD,(A,C) + (b/4)PD,(A,B) + (c/4)0

+ (d/4)PD,(B,C)

+ (1 − a/4 − b/4 − c/4 − d/4)PD,(A,B,C)
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More in general, in a duel between N individuals of type

Xi ∈ X = {X1, X2, . . . , XN}, with skills xi ∈ {x1, x2, . . . , xN},

type Xi should target the individual of type Ti ∈ T = (X:

Ti �= Xi) that, if eliminated, would give Xi the highest chance of

winning in the eventual duel with the types left Yi ∈ (T: Yi �= Ti).

Therefore,

PXi (T) =
N∑

j=1

(x j/N )·p j

+
[

1 −
N∑

j=1

(x j/N )

]
·PXi (T)

where

p j =
{

PXi (T: Yi �=Tj) if Tj �= Xi

0 if Tj = Xi

It is easy, if a bit tedious, to show that the same rule found

for the four-person duel (shoot at the type immediately weaker

than oneself, unless one is the weakest, in which case one should

shoot at the strongest type) should be adopted in duels with more

players.

A complete analysis of N-person duels for N > 3 is beyond

the scope of this article. It is easy to verify, however, that the type

with the lowest skill has again the highest probability of surviving

and the type with the highest skill has the lowest probability,

like in the three-person duel (unless differences in skills are too

extreme). For example, in the four-person duel, if a = 1, b = 0.9,

c = 0.8, d = 0.7, the result is that PA,(B,C,D) = 0.176, PB,(A,C,D) =
0.213, PC,(A,B,D) = 0.271, and PD,(A,B,C) = 0.338.

Discussion
THE TRUEL

An N-person duel is a series of sequential, repeated, pairwise

interactions with opponents from a group of N players. This is

different from both a two-person repeated game (pairwise interac-

tions with the same opponent) and an N-person game (collective

interactions) and can lead to surprising results. Simple strategic

considerations on payoff maximization lead to what can be dubbed

“survival of the weakest”: the weakest player can have the highest

fitness; the strongest player can have the lowest. This result arises

from strategic considerations alone (Shubik 1954). The theory of

three-person duels has been applied to the study of strategic voting

in political economy, where it has implications for competition in

multiple-party elections (Kilgour 1972, 1975, 1978; Kilgour and

Brams 1997), but it can also be used in interactions in evolving

populations. Although most of the analysis presented here, and

all the literature to date, is limited to three-person duels, the logic

of the truel (survival of the weakest) seems to apply to N > 3

as well, and future extensions to duels between more than three

players seem possible. Most of the results reported here focus on

three-person duels, as will the rest of this discussion.

TRUELS IN BIOLOGY

As in most games shared by economics and biology, the logic of

rational choice (in economics) is replaced by the logic of natural

selection (in biology): mutations that induce an individual to com-

pete preferentially with the right opponent will have an advantage

and increase in frequency; a rational, conscious ability to tell skills

or ranks apart is not necessary. The main difference with simple

static truels between three individuals (Shubik’s truel) is that, in

an evolving population, participants in the truel will be chosen

with a probability proportional to their current frequency in the

population—the approach adopted in this article—and therefore

the outcome may change over time.

Although truels have been ignored so far in evolutionary bi-

ology, a certain amount of attention (e.g., Maynard-Smith 1983;

Sinervo and Lively 1996; Alonzo and Sinervo 2001; Frean and

Abraham 2001; Nahum et al. 2011) has been devoted to another

game that might resemble the truel: the rock-paper-scissors (RPS)

game. The RPS game, however, is a two-person game (with three

strategies), whereas the truel is a three-person game; a cyclical

dynamics arises in the RPS because of its peculiar ranking of

payoffs (A defeats B, which defeats C, which defeats A), which

is absent in the duels we have analyzed here (in which A defeats

both B and C, and B defeats C) and is not necessary to pro-

duce cyclical dynamics in the truel. It is the fact that interactions

are between more than two players, not the peculiar ranking of

payoffs, which produces a diversity of equilibria and dynamics

(including cyclical dynamics) in the truel. Although a few exam-

ples of RPS game have been described in nature (e.g., Sinervo

and Lively 1996; Alonzo and Sinervo 2001) or created in the

laboratory (Nahum et al. 2011), the simple ranking of payoffs

assumed by the truel seems to have more general applicability. It

is interesting that even in the RPS being the weakest competitor

can be an advantage (Nahum et al. 2011). Note, however, that the

“survival of the weakest” described by Frean and Abraham (2001)

for the RPS game (in which it means that the weakest type does

not disappear because of the cyclical dynamics) is different from

Shubik’s (1954) (in which it means that the weakest type can go

to fixation).

The assumption of sequential, repeated interactions with

multiple opponents is not very restrictive. Indeed, there is no

reason to assume that antagonistic interactions are always be-

tween two individuals only and end after one shot. In some cases,

individuals in a group have precise hierarchy dominance rankings

and must decide whom to pick a fight with, as in a truel. Indeed,

Shubik (1954), in his introduction to the truel, credits Konrad

Lorenz for pointing out that this kind of interactions is common

6 4 8 EVOLUTION MARCH 2012
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SURVIVAL OF THE WEAKEST IN N-PERSON DUELS

in fights among animals. Examples of antagonistic interactions

that can be modeled as simple Shubik’s truels are physical con-

tests between males for access to females, contests for dominance

over territories and resources, fights for establishing dominance

hierarchies.

Consider fights in red deer (Cervus elaphus). One of the first

observations of fighting behavior (Clutton-Brock et al. 1979) was

that weak stags attack strong stags more frequently than what

would be expected by chance, and vice versa strong stags attack

weak stags less frequently. This observation, however, may be

biased by the fact that, because strong stags are more likely to be

holders of a territory, weak stags have more to gain from attack-

ing strong stags. More detailed analysis of fighting frequencies

showed that fights usually occur between stags with similar fight-

ing abilities; as one of the earliest accounts of social behavior

in red deer (Darling 1937) noticed, “only stags of almost equal

merit fight each other.” More precisely, fights between stags that

are more than two steps apart in the dominance hierarchy occur

less frequently than one might expect by chance (Clutton-Brock

et al. 1982). This result was confirmed by a more precise and

recent analysis (Freeman et al. 1992) showing that stags pick up

fights preferentially with individuals immediately below their own

hierarchy level. This is a striking observation when compared to

the logic of the truel.

Remember that, although in the three-person duel the logic is

to shoot at the strongest opponent (A should shoot at B, and both

B and C should shoot at A), this is a degenerate version of the

more general rule that, in N-person duels, one should shoot at the

type immediately weaker than oneself (unless one is the weakest,

in which case he should shoot at the strongest type); in the three-

person duel this rule degenerates into shooting at the strongest

opponent because, as we have seen, it does no longer apply to

the average player. The general rule, therefore, seems to match

the observed preferences for picking up fights in N-person duels

in red deer. It would be interesting to study actual three-person

duels rather than N-person duels, to see whether the degenerate

rule of shooting at the strongest opponent is observed; it would

also be interesting to see whether the very weakest individuals in

red deer actually prefers to pick up fights with the strongest (we

lack data because weaker individuals usually fight less often).

MORE REALISTIC TRUELS: EFFECTS ON EQUILIBRIA

AND DYNAMICS

Shubik’s truel is a neat example of how strategic thinking can

lead to counterintuitive results. In its basic form, however, it lacks

the sophistication to describe interactions that go beyond actual

shooting contests. Five possible extensions of the truel were dis-

cussed here: a mixture of two-person and N-person interactions

(A Mixture of Duels and Truels), the possibility that the contest

end without a winner (Limited Truels: Contests Can End without a

Winner); a correlation between defensive and offensive skills (De-

fensive Truels: Defensive and Offensive Skills are Correlated); the

possibility that players not directly involved in the contest suffer

collateral damage (Interference Truels: Collateral Damage); most

important: the possibility that the attacked individual backfires

when attacked (Truels with Backfire: Immediate Retaliation). All

these possibilities were studied in evolving populations, rather

than in static games between three types.

The paradox arising from Shubik’s truel (survival of the

weakest) extends to interactions in evolving populations: because

the weakest type has the highest fitness, selection cannot lead

to a gradual increase of skills in antagonistic interactions. This

means that design by natural selection in phenotypes related to

competition can only be explained by mutations with very large

effects (which seems contrary to the standard view of gradual

evolutionary change) or if contests are always between two in-

dividuals (which seems unlikely). More realistic assumptions on

the nature of the interactions, however, allow to solve the paradox

and produce diverse equilibria and dynamics.

First, playing the truel in evolving populations can lead to

different equilibria and even, for a narrow range of parameters,

cyclical polymorphisms. If individuals engage in a mixture of

duels and truels, the paradox generally disappears because the

strongest type has an advantage in normal duels. At intermediate

frequencies of truels, which type is stable depends on the dif-

ferences in skill between the three players: the weakest player

is more likely to be stable when the frequency of truels is high

(Fig. 1).

More realistic assumptions on the nature of fights we have

considered are the following: after each shot the interaction can

end without a winner; defensive and offensive skills can be cor-

related so that strong players are also better defended against the

other player’s attack; an action against one individual can produce

collateral damage for the third one (e.g., in indirect competition

for a foraging territory). These extensions of Shubik’s truel lead

to different results: multiple stable equilibria are possible, and

cyclical polymorphic equilibria become more likely; the period

of the oscillations can be very long, in the order of thousands of

generations, so that short-term population data might not show

that the frequencies are changing over time (Fig. 2).

The most important modification of Shubik’s truel, however,

is the backfire model: here we no longer consider sneak attacks

as in Shubik’s truel (in which the target has no option to coun-

terattack), but more general contests in which one player simply

chooses whom he wants to fight with, and then the target op-

ponent can immediately fight back (without waiting his turn to

choose). Winning the fight, in this case, depends on the skill of

the target too (whereas Shubik’s truel assumes it is independent),

and attacking a strong individual is more costly than attacking a

weak individual. Taking into account this backfire effect, a new

EVOLUTION MARCH 2012 6 4 9
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MARCO ARCHETTI

unexpected result emerges: the three types can coexist in a stable

polymorphism (Fig. 3). Note that this is not a trivial effect of nega-

tive frequency dependence, as in two-person duels under the same

assumptions (backfire effect) there is no stable polymorphism and

the strongest player always goes to fixation.

Note that we have assumed that individuals must be able to

tell skills apart, and that there is no scope for cheating: in all

models of truels analyzed so far skills are common knowledge

and cannot be faked. This is a reasonable assumption for indices

of quality such as body size or antler size; in other cases, how-

ever, one should take into account the possibility of mistakes in

assessing ranks, or the possibility of cheating, and it would be

interesting to analyze what happens in these cases.

IMPLICATIONS FOR THE MAINTENANCE

OF VARIATION IN NATURAL POPULATIONS

Beside the precise characterization of the equilibria and of the

dynamics, the general lesson arising from the analysis of three-

person duels in evolving populations is that it is not simply the case

that the strongest type survives and goes to fixation (survival of the

fittest) as predicted by two-person games, or that the weakest type

does (survival of the weakest) as in Shubik’s truel, but that a variety

of other possibilities exists instead. This may help understand the

persistence of variation in natural populations.

What maintains variation in fitness-related traits is one of

the major unresolved issues in evolutionary biology (Barton

and Turelli 1989; Charlesworth and Hughes 1999; Barton and

Keightley 2002). Two possible solutions have been proposed.

The first is fluctuating selection: the optimal phenotype may vary

in space or time, for instance, because parasites are continually

evolving to overcome host defenses. The second is mutation–

selection balance: recurrent mutations can generate new genetic

variation as quickly as it is eroded by selection. As we have seen,

if interactions are (even partially) between more than two players,

there is no need to invoke recurrent mutations or fluctuating selec-

tion to explain the maintenance of variation. Constant selection

can maintain existing variation simply because of the strategic

nature of the interactions. This clearly does not question the im-

portance of fluctuating selection or recurrent mutations for the

maintenance of variation, but can help explain it under constant

selection and low mutation rates.

CONCLUSION

The theory of N-person duels leads to counterintuitive results.

By highlighting the strategic nature of competition, game theory

sheds light on one of the most enduring problems in evolutionary

theory: the persistence of variation under constant selection. By

making more realistic assumptions on the nature of actual antag-

onistic interactions, evolutionary biology helps understand one of

the oldest paradoxes of game theory.
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