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a b s t r a c t

The theoretical literature from 1985 to the present on the evolution of learning strategies in variable
environments is reviewed, with the focus on deterministic dynamical models that are amenable to
local stability analysis, and on deterministic models yielding evolutionarily stable strategies. Individual
learning, unbiased and biased social learning, mixed learning, and learning schedules are considered. A
rapidly changing environment or frequent migration in a spatially heterogeneous environment favors
individual learning over unbiased social learning. However, results are not so straightforward in the
context of learning schedules or when biases in social learning are introduced. The three major methods
of modeling temporal environmental change – coevolutionary, two-timescale, and information decay
– are compared and shown to sometimes yield contradictory results. The so-called Rogers’ paradox is
inherent in the two-timescalemethod as originally applied to the evolution of pure strategies, but is often
eliminated when the other methods are used. Moreover, Rogers’ paradox is not observed for the mixed
learning strategies and learning schedules that we review. We believe that further theoretical work is
necessary on learning schedules and biased social learning, based on models that are logically consistent
and empirically pertinent.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Learning is ameans of acquiring information about the environ-
ment and of expressing a phenotype (behavior) appropriate to that
environment. Two forms of learning may be distinguished by the
source of the information acquired. Individual learning (IL) occurs
when an organism depends on its personal experience to gather
the information directly from the environment, e.g., by trial-and-
error. The second form of learning is social learning (SL), which
occurs when an organism obtains the information indirectly by
copying other organisms, e.g., by imitation.

A learning strategy is the way in which an organism combines
IL and SL, either simultaneously or sequentially, and its relative de-
pendence on each. Biases associated with SL in the choice of whom
to copy are also an integral part of a learning strategy. The sim-
plest strategies involve the use of IL or SL but not both. Each learn-
ing strategy can be regarded as a genetic adaptation to a specific
kind of environmental variability. A learning strategy supports cul-
ture, to the extent that an innovation produced by IL is propagated
through the population by SL. The learning strategy available to a
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species will – in conjunction with other factors such as its demog-
raphy – determine the nature and properties of its culture.

Evolutionary models of learning, the subject of this review, are
to be distinguished from classical learning models in psychology,
which were constructed as mathematical formulations for how to
assess the probabilities of alternative behaviors upon presentation
of stimuli to a subject. These probabilities changed dynamically so
that the subject’s behavior over time would also change. The focus
was on modifications of individual behavior over the course of
such trials (Bush and Mosteller, 1955; Hanania, 1959). Extensions
of such models have been made to competitive situations where
the members of a set of players adopt behaviors at each time
step that depend on the history of decisions made by all the
players (e.g., Izquierdo and Izquierdo, 2008). Common applications
allow players to choose one of two behaviors, and the time-
dependent and asymptotic probabilities of adopting each behavior
are computed.

Our focus is on the evolution of learning strategies in a
population. Each learning strategy is assumed to be genetically
determined and – in the models that we consider in this review
– not modifiable by learning. The fitness of a learning strategy in
a given environment depends on whether the behavior(s) it dic-
tates is (are) adaptive or maladaptive in that environment. The en-
vironmentmay change in timeor vary spatially, and a behavior that
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may have been the best, in terms of natural selection, in one envi-
ronment may not be the best in another. The fitness of a learning
strategy also depends in a frequency-dependent manner on what
the competing strategies are doing. Earlier studies (e.g., Boyd and
Richerson, 1985; Rogers, 1988; Feldman et al., 1996) emphasized
SL, as this form of learning is essential for culture. More recently,
learning strategies combining IL and SL that support cumulative
culture are receiving attention (e.g., Enquist et al., 2007; Borenstein
et al., 2008; Aoki, 2010; Lehmann et al., 2010; Aoki et al., 2012).

In ecology, the evolution of learning has been widely stud-
ied in the context of foraging (e.g., Barnard and Sibly, 1981;
Stephens, 1991; Rodriguez-Gironés and Vásquez, 1997; Giraldeau
and Caraco, 2000; Eliassen et al., 2009; Dubois et al., 2010; Katsnel-
son et al., 2011; Arbilly et al., 2011). The models in this area often
address complex situations and posit specific targets of learning,
such as where to forage or whether to produce or to scrounge. As
such, these models are usually not amenable to a formal mathe-
matical treatment. The evolutionary models of learning that we
consider in this review are more ‘‘abstract’’, in the sense that the
behavioral alternatives are distinguished only by whether they are
adaptive or maladaptive, or by the degree of adaptedness. Some
models are phrased in terms of the number of adaptive cultural
traits carried by an organism (Lehmann and Feldman, 2009; Naka-
hashi, 2010), but they will not be addressed in this review. In the
simplest situations, we can write down the dynamical equations
describing the changes in the frequencies of the competing learn-
ing strategies in terms of their variable fitnesses in the different
environments to which they are exposed. More complicated situa-
tions involving strategies that differ in the probabilities of using IL
or SL can sometimes bemodeled by the evolutionarily stable strat-
egy (ESS) approach (Maynard Smith, 1982).

The models reviewed in detail in this paper are numbered se-
quentially from 1 to 11. We seek the stable equilibria of the dy-
namical equations or alternatively the ES learning strategy. In
addition, we briefly discuss several interesting but complex
models, some of which have been investigated using Monte
Carlo/agent-based simulations. It will be seen that the results ob-
tained from the simpler models can usefully be applied to inter-
preting the observations on the more complex models. Finally, we
ask whether the presence of SL will improve the (geometric) mean
fitness of a population relative towhen it is absent—i.e., we address
the so-called Rogers’ paradox (Rogers, 1988; Boyd and Richerson,
1995). Table 1 summarizes the provenance of models 1–11 and in-
dicates for each model whether or not Rogers’ paradox occurs.

2. Dynamical models in temporally variable environments

The basic models of this section assume the simplest learning
strategies, namely those that involve the use of IL or SL but not
both. They also assume dichotomous variation in the phenotype
(behavior) that can be acquired by learning. It is then possible
to write down the difference equations governing the frequency
dynamics of the learning strategies and phenotypes, which is done
here for three of the four models.

2.1. Model 1: infinite-states l-cycle coevolutionary model

This model, which was first described by Feldman et al. (1996)
in a slightly less general form, is coevolutionary in the sense
that the learning strategies and behaviors can coevolve. Consider
an infinite population of haploid organisms in which a genetic
locus with two alleles determines whether an organism is an
obligate individual learner or an obligate social learner. Among the
adults of each generation, we distinguish two behaviors, correct
or wrong, which are adaptive or maladaptive, respectively, in
the environment faced by that generation. Behaviors are defined
Table 1
Provenance of Models 1–11 and possibility of Rogers’ paradox.

Model Provenance Commentsa Rogers’ paradox

1 Feldman et al. (1996) Generalization Always
observed

2 Feldman et al. (1996) Parameter
range
extended

Sometimes
resolved

3 Rogers (1988) Modified
formulation

Always
observed

4 Kendal et al. (2009) Simplification Sometimes
resolved

5 Feldman et al. (1996) Detailed
analysis

Resolved

6 Boyd and Richerson (1988, 1995) Modified
formulation

Not considered

7 Aoki and Nakahashi (2008) Unmodified Sometimes
resolved

8 Enquist et al. (2007) Reworded Sometimes
resolved

9 Aoki et al. (2012) Unmodified Resolved
10 Nakahashi et al. (2012) Unmodified Not addressed
11 Wakano and Aoki (2006) Unmodified Not addressed
a Comments refer to the present analysis and discussion of the models in the

corresponding references.

relative to the environment, so that when the environment
changes, so do the behaviors that are correct orwrong. These adults
reproduce asexually without fertility differences.

A newborn individual learner gathers information directly from
the environment and achieves the correct behavior on its own
before becoming an adult. However, it suffers a cost, c , which can
be interpreted as the probability of making a fatal mistake. Hence,
a fraction 1 − c of individual learners survive to adulthood, and
they all show the correct behavior.

A newborn social learner, on the other hand, acquires its
behavior by faithfully copying (i.e., imitating) a random member
of the parental generation. Its behavior will be correct only if the
behavior that it copies from its exemplar (i.e., cultural parent)
is correct in the environment into which it is born. We assume
that the environment changes every l generations, with that
change occurring just prior to birth. Moreover, an environmental
change results in a previously unknown state, which entails that
neither of the two preexisting behaviors (correct or wrong) can be
correct after the environmental change. Hence, only the individual
learners can acquire the correct behavior immediately after an
environmental change; this is known as the infinite environmental
states assumption. A social learner with correct behavior has
fitness (relative viability) 1, whereas the fitness associated with
wrong behavior is 1 − s. We assume 0 < c < s < 1; otherwise,
the individual learners will be selected out unconditionally.

Hence, among the surviving adults of any generation, there can
be three phenogenotypes (i.e., genotype–phenotype combinations,
Feldman and Cavalli-Sforza, 1984): individual learner, social
learner with correct behavior (SLC), and social learner with wrong
behavior (SLW). Let us denote their respective frequencies in
the parental generation by z, x, and y, and the corresponding
frequencies in the offspring generation by z ′, x′, and y′. Then, the
difference equations governing the dynamics of these variables can
be written as follows. When there is an intervening environmental
change, which occurs once every l generations, we have

Vx′
= 0, (1.1a)

Vy′
= (1 − s)(x + y), (1.1b)

Vz ′
= (1 − c) z, (1.1c)

where

V = (1 − c) z + (1 − s)(1 − z). (1.1d)
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On the other hand, when the environment does not change
between the generations,

Wx′
= (x + y)(x + z), (1.2a)

Wy′
= (1 − s) (x + y) y, (1.2b)

Wz ′
= (1 − c) z, (1.2c)

where

W = (1 − c) z + (1 − sy)(1 − z). (1.2d)

Eqs. (1.2) are to be applied consecutively l − 1 times, since there
are l − 1 generations of environmental stasis after a change. The
variables V and W in Eqs. (1.1d) and (1.2d) give the population
mean fitnesses when the environment changes and when it does
not change, respectively, and serve to normalize the equations.

To illustrate how these recursions follow from the assumptions,
we briefly explain the derivation of Eqs. (1.1a), (1.1b), (1.2a) and
(1.2b). Note first that SLC and SLW have the same genotype
although their phenotypes differ, so that the frequency of social
learners among the newborns of the offspring generation will be
the sumof their frequencies, x+y.When the environment changes,
neither the correct behavior nor thewrong behavior in the parental
generation is correct as viewed from – i.e., in the environment
faced by – the offspring generation. Hence, all newborn social
learners will be SLW, and since their viability is 1 − s, we obtain
Eq. (1.1b). In this case the frequency of SLC will of course be 0,
resulting in Eq. (1.1a). With environmental stasis, on the other
hand, fractions x + z and y of the parental generation – recall
x, y, and z are the frequencies of SLC, SLW, and individual learners,
respectively – have correct and wrong behaviors, respectively, as
viewed from the offspring generation. Hence, when a newborn
social learner copies a randommember of the parental generation,
it acquires the correct behavior with probability x + z and the
wrong behavior with complementary probability y. On including
the effects of viability selection, we obtain Eqs. (1.2a) and (1.2b).

There are two monomorphic equilibria of the model, which
always (i.e., for all valid parameter combinations) exist. At the first
such equilibrium, the individual learners are fixed, and we have
ẑ(i)

= 1 for 0 ≤ i ≤ l− 1, where the hat indicates equilibrium, and
the generations are counted with i = 0 indicating the generation
immediately before an environmental change. This equilibrium is
(locally) stable if

1 − s < (1 − c)l. (1.3)

At the second monomorphic equilibrium, SLW are fixed, such that
ŷ(i)

= 1 for 0 ≤ i ≤ l − 1. This equilibrium is always unstable. In
addition, we conjecture the existence of a periodic fully polymor-
phic (all three phenogenotypes are present) equilibrium, which is
stable when inequality (1.3) is reversed. Clearly, inequality (1.3)
is more likely to be satisfied when l is small, where l is the pe-
riod of environmental change. Since a shorter period corresponds
to greater environmental instability, the model predicts that indi-
vidual learners are more likely to be fixed in a more changeable
environment. See Appendix A for details.

2.2. Rogers’ paradox

Rogers (1988) reasoned that the introduction of social learners
into a population of individual learners would improve the mean
fitness of that population, because social learners make culture
possible, and culture is presumably an adaptation the capacity
for which evolved by natural selection. Contrary to expectation,
his simple model (see Model 3) suggested that this was not true.
Rogers’ paradox, as it has come to be called, is said to occur
when the parameter values are such that (a) a stable equilibrium
exists with social learning (learners) present, (b) a monomorphic
equilibrium of individual learning (learners) also exists, and (c) the
two equilibria have the same mean fitness (Boyd and Richerson,
1995; Enquist et al., 2007). In such a case, culture does not appear
to impart a fitness advantage: hence the paradox.

For Model 1 described above, numerical work suggests that a
periodic fully polymorphic equilibrium exists and is stable when
inequality (1.3) is reversed. Because ẑ(i) > 0 for 0 ≤ i ≤ l − 1 at
this equilibrium, Eqs. (1.1c) and (1.2c) entail that the equilibrium
mean fitness in any generation is equal to 1− c , and hence that the
geometric mean of the mean fitnesses over the l-cycle is 1− c. The
same argument shows that the geometric mean when individual
learners are fixed is also 1 − c. Thus, Rogers’ paradox is observed
in this model.

2.3. Model 2: two-state l-cycle coevolutionary model

We modify Model 1 by assuming that the environment fluctu-
ates between two states, e.g., hot and cold, again with period l.
There are two behaviors each of which is correct in one environ-
mental state andwrong in the other. Hence, when there is an inter-
vening environmental change, the wrong behavior in the parental
generation becomes the correct behavior as viewed from the off-
spring generation. For this model, the difference equations (1.2)
still apply, but we must replace Eq. (1.1) by

Vx′
= (x + y) y, (2.1a)

Vy′
= (1 − s)(x + y)(x + z), (2.1b)

Vz ′
= (1 − c) z, (2.1c)

where

V = (1 − c) z + [1 − s(1 − y)] (1 − z). (2.1d)

Note that x+ z and y in Eqs. (2.1a) and (2.1b) are interchanged, re-
flecting the reversal of correct and wrong after an environmental
change.

In relation to Rogers’ paradox, an interesting aspect of this
model is that a population that is monomorphic for social learners
– but in which SLC and SLW coexist – cannot be invaded by
individual learners if

(1 − c)2 < 1 − s. (2.2)

There are an infinite number of periodic equilibria where social
learners are fixed, which are neutrally stable with regard to per-
turbations in the frequencies of SLC and SLW. Nevertheless, each
such equilibrium is stable to invasion by individual learners pro-
vided inequality (2.2) is satisfied. Moreover, the geometric mean
of the mean fitnesses is

√
1 − s, whereas it is 1 − c when individ-

ual learners are fixed. Hence, a population that ismonomorphic for
social learners can be stable and have a higher mean fitness than
one that is monomorphic for individual learners—Rogers’ paradox
is resolved. See Appendix B for details. (In Feldman et al. (1996),
we stated that the fixation of social learners was always unstable.
This result followed from the parameterization used in that paper
which entailed that c < s/2.)

2.4. Model 3: Rogers’ two-timescale model

The two-timescale model assumes that the genetic evolution
is much slower than the cultural evolution and hence that ge-
netic variables can be regarded as constants of cultural evolution
(Rogers, 1988; Enquist et al., 2007). Although this is not a dynam-
ical model for phenogenotypes, we include it here because it is
closely related to the other models in this section. We explain
Rogers’ result using an argument that differs slightly from the orig-
inal. There are two environmental states as in Model 2 described
above. The possible phenogenotypes and their fitnesses are as in
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Models 1 and 2, which is a more general parameterization than
Rogers (1988).

Let p be the genetically-determined frequency of social learners
among adults. Consider a focal newborn social learner and a social
transmission chain extending backward in time with random
copying from the previous generation. This chain may comprise
social learners of ascending generations, but will eventually end in
an individual learner. Since p is assumed constant during cultural
evolution, the probability that an individual learner occurs in this
chain for the first time exactly t generations ago is

pt−1(1 − p). (3.1)

Next, let ε be the probability of an environmental change between
generations. Since the environment fluctuates between two states,
fitness is clearly dependent on whether the number of environ-
mental changes is even or odd. Appendix C shows that the prob-
ability of no environmental change or an even number of changes
in t generations is

1
2


1 + (1 − 2ε)t


. (3.2)

In this case, the (correct) behavior acquired t generations ago by
an individual learner is correct in the current generation. If, on the
other hand, there are an odd number of environmental changes,
which occurs with complementary probability 1

2


1 − (1 − 2ε)t


,

this behavior is now wrong, and the fitness will be 1 − s rather
than 1. Hence, the expected fitness of a social learner is

w̃(2)
s =

1
2

∞
t=1

pt−1 (1 − p)


1 + (1 − 2ε)t


+

1 − (1 − 2ε)t


(1 − s)


, (3.3)

which reduces to

w̃(2)
s = 1 −

sε
1 − p(1 − 2ε)

. (3.4)

The superscript (2) indicates that the fitness of the social learner
has been calculated on the two environmental statesmodel. Rogers
(1988) sets the fitnesses of SLC and SLW to w + b and w − b,
respectively. It can be shown with the appropriate substitutions
(w → 1 − s/2, b → s/2, u → 2ε) that Eq. (3.4) is equivalent
to the unnumbered equation in Rogers (1988) immediately above
Eq. (2) of that paper.

The fitness of an individual learner is 1 − c. Thus, at the
genetically polymorphic equilibrium

1 − c = 1 −
sε

1 − p(1 − 2ε)
. (3.5)

Solving Eq. (3.5) yields

p̂ =
c − sε

c(1 − 2ε)
, (3.6)

which is valid for sε < c. If sε > c , on the other hand, the only valid
equilibrium is one that is monomorphic for individual learners.

Let us now briefly redo the calculations for an infinite environ-
mental states version of Rogers’ model. The probability of no envi-
ronmental change in t generations is (1 − ε)t , and the probability
of at least one change is 1 − (1 − ε)t . Hence, the expected fitness
of the newborn social learner in this modified Rogers’ model is

w̃(∞)
s =

∞
t=1

pt−1 (1 − p)

(1 − ε)t +


1 − (1 − ε)t


(1 − s)


,

(3.7)
which reduces to

w̃(∞)
s = 1 −

sε
1 − p(1 − ε)

. (3.8)

The superscript (∞) distinguishes the infinite from the two envi-
ronmental states model. Hence, the frequency of social learners at
the genetically polymorphic equilibrium for this case is

p̂ =
c − sε

c(1 − ε)
. (3.9)

We have two comments on the analysis by Rogers (1988). First,
the so-called Rogers’ paradox is inherent in his derivation, since
the genetically polymorphic equilibrium, p̂, is obtained by equating
the fitnesses of the individual learners and the social learners (see
Eq. (3.5)). Second, it fails to identify the stable monomorphism of
social learners that is predicted by the dynamical model (Model 2).

2.5. Model 4: information decay model

Assume, as in the modified (infinite environmental states)
Rogers’ model, that the correct behavior becomes outdated and
hencewrongwith probability ε per generation. Parameter ε would
appear to have the samemeaning as in themodified Rogers’model.
Then, with the possible phenogenotypes and their fitnesses as in
Model 1, the difference equations are

Wx′
= (x + y)(x + z)(1 − ε), (4.1a)

Wy′
= (1 − s)(x + y) [(x + z) ε + y] , (4.1b)

Wz ′
= (1 − c) z, (4.1c)

where

W = (1 − c) z + {1 − s [ε + y (1 − ε)]} (1 − z). (4.1d)

In Eqs. (4.1a) and (4.1b), the term (x + z) ε represents the decay
of adaptive information. With this model, we do not require a
separate set of equations for environmental change and stasis. This
modeling approach has been used by Kendal et al. (2009), Lehmann
and Feldman (2009), Lehmann et al. (2010), and Nakahashi (2010).
In fact, the inclusion ofModel 4 in the current paperwasmotivated
by the model of Kendal et al. (2009) for the case of unbiased social
learning.

The equilibria of Eqs. (4.1) and their stability properties are as
follows.

(A) x̂ = 0, ŷ = 0, ẑ = 1, Ŵ = 1− c; this is monomorphic for in-
dividual learners, always (i.e., for all parameter combinations)
exists, and is stable if c < sε.

(B) x̂ = 0, ŷ = 1, ẑ = 0, Ŵ = 1 − s; this always exists but is
never stable.

(C) x̂ =
s−ε

s(1−ε)
, ŷ =

ε(1−s)
s(1−ε)

, ẑ = 0, Ŵ = 1 − ε; this is genetically
monomorphic for social learners, exists if ε < s, and is stable
if ε < c.

(D) x̂ =
(c−sε)(s−c)
s(1−ε)c(1−s) , ŷ =

c−sε
s(1−ε)

, ẑ =
(s−c)(ε−c)
(1−ε)c(1−s) , Ŵ = 1 − c; this

is a fully polymorphic equilibrium, exists if sε < c < ε, and is
stable whenever it exists. See Appendix D for details.

Fig. 1 illustrates the mutually exclusive regions in the parameter
space of c and s where equilibria (A), (C), and (D) exist and
are stable. Equilibrium (A), which is monomorphic for individual
learners, coexists with the other two equilibria throughout the
upper triangular region of Fig. 1, and is always associated with a
mean fitness of 1 − c. Social learners are present at equilibria (C)
and (D). The mean fitness at equilibrium (D) is 1 − c , which is
identical to that at equilibrium (A), and these two equilibria can
coexist for the same parameter values (i.e., sε < c < ε). Hence,
Rogers’ paradox occurs in this case.
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Fig. 1. Regions of local stability of the equilibria of Model 4 (information decay
model) in the (c, s)-parameter space. In the triangular regions labeled IL, SL, and
P, the parameter values are such that fixation of individual learners, fixation of
social learners, and polymorphism of both are, respectively, the unique locally
stable equilibrium. The lower triangular region is void by assumption. Parameter
ε represents the rate of decay of adaptive information per generation.

When c > ε on the other hand, the equilibrium (C) is stable,
and the mean fitness at this equilibrium, 1 − ε, is greater than
at the coexisting unstable monomorphism of individual learners.
Hence, Rogers’ paradox is resolved in this case. Interestingly, an
equilibrium corresponding to (C) does not exist in the model of
Kendal et al. (2009), which entails that Rogers’ paradox is not
eliminated (in the case of unbiased social learning). But when
notational idiosyncrasies are accounted for, theirmodel is identical
to Model 4 considered here, except that selection acts through
fertility rather than viability differences. Clearly, whether or not
Rogers’ paradox occurs is determined by subtle differences in the
assumptions.

Equilibrium (D) in this model would seem to correspond to
the genetically polymorphic equilibrium in the modified Rogers’
model given by Eq. (3.9). Hence, one might expect x̂ + ŷ = p̂ to
hold, but this is not the case. In fact, x̂ + ŷ = p̂ 1−c

1−s .

3. ESS models in temporally variable environments

3.1. Model 5: mixed strategy model with infinite-states l-cycle

The four models described above share the perhaps ‘‘unrealis-
tic’’ assumption that an organism can engage in individual learn-
ing (IL) or social learning (SL) but not both. Here, we consider a
model due to Feldman et al. (1996) in which IL and SL are both
available to the same organism. The analysis requires us to posit
two genetically determined mixed strategies, the resident and the
mutant, that differ in the probability of using IL, which we denote
by L for the resident and L+ dL for the mutant. As before, a behav-
ior is either correct or wrong. Hence, we need to distinguish four
phenogenotypes: resident with correct behavior, resident with
wrong behavior, mutant with correct behavior, and mutant with
wrong behavior. Their frequencies among asexually reproducing
adults are x, x̄, y, and ȳ, respectively. Note that, these variables are
defined differently from those in the dynamical models considered
in the previous section. An environmental change results in a state
that has not been experienced before (infinite states).

When the environment changes, the correct behavior is
achieved only by IL. Hence, the difference equations are

Vx′
= (x + x̄) L(1 − c), (5.1a)

V x̄′
= (x + x̄) (1 − L)(1 − s), (5.1b)
Vy′
= (y + ȳ) (L + dL)(1 − c), (5.1c)

V ȳ′
= (y + ȳ) (1 − L − dL)(1 − s), (5.1d)

with

V = (x + x̄) [L (1 − c) + (1 − L) (1 − s)]
+ (y + ȳ) [(L + dL) (1 − c) + (1 − L − dL)(1 − s)] . (5.1e)

When there is no environmental change between the generations,
the correct behavior can be achieved either by IL, or by SL from an
appropriate exemplar. Hence,

Wx′
= (x + x̄) [L (1 − c) + (1 − L)(x + y)] , (5.2a)

Wx̄′
= (x + x̄) (1 − L)(1 − s)(x̄ + ȳ), (5.2b)

Wy′
= (y + ȳ) [(L + dL) (1 − c) + (1 − L − dL)(x + y)] , (5.2c)

Wȳ′
= (y + ȳ) (1 − L − dL)(1 − s)(x̄ + ȳ), (5.2d)

with

W = (x + x̄) {L (1 − c) + (1 − L) [1 − s(x̄ + ȳ)]}
+ (y + ȳ) {(L + dL) (1 − c)
+ (1 − L − dL) [1 − s(x̄ + ȳ)]} . (5.2e)

As before, we assume 0 < c < s < 1.
We show in Appendix E that the genetically monomorphic

periodic equilibrium of the resident can be written as

ˆ̄x
(i)

=
1 − α

1 − α + β(1 − αi)
, x̂(i)

= 1 − ˆ̄x
(i)

(5.3a)

for 1 ≤ i ≤ l, where

α =
L (1 − c) + 1 − L
(1 − L)(1 − s)

, β =
L(1 − c)

(1 − L)(1 − s)
. (5.3b)

This equilibrium has period l, since ˆ̄x
(1)

=
1

1+β
every l generations.

Hence, ˆ̄x
(0)

= ˆ̄x
(l)
. In the special case of L = 1, we clearly have

ˆ̄x
(i)

= 0 for 1 ≤ i ≤ l from Eqs. (5.1b) and (5.2b).
Furthermore, the eigenvalue governing the invasion of the

mutant is

λ = A
l−1
i=1

B(i), (5.4a)

where

A = 1 + dL
s − c

L (1 − c) + (1 − L)(1 − s)
,

B(i)
= 1 + dL

sˆ̄x
(i)

− c

L (1 − c) + (1 − L)(1 − sˆ̄x
(i)

)
.

(5.4b)

It can readily be shown that the L = 0 (pure SL) strategy cannot be
an ESS, and that a necessary condition for the L = 1 (pure IL) strat-
egy to be an ESS is l < s/c. The latter condition entails that shorter
periods of environmental change are necessary for the evolution
of IL, which is consistent with our findings based on the previous
models. Furthermore, when dL is small, a necessary condition for
an internal ESS is given by

f (L) =
s − c

L (1 − c) + (1 − L)(1 − s)

+

l−1
i=1

sˆ̄x
(i)

− c

L (1 − c) + (1 − L)(1 − sˆ̄x
(i)

)
= 0. (5.5)

The solution(s) for L can be found numerically for given values of s,
c , and l on substituting Eq. (5.3a) with (5.3b) into (5.5).
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Let us now examine the special case of environmental period 2
(l = 2) in some detail. We wish to determine the conditions for
an interior ESS – which is analogous to a genetically polymorphic
equilibrium in the dynamical models – to exist and whether
Rogers’ paradox is observed. Eqs. (5.3) and (5.4) reduce to

ˆ̄x
(0)

=
1

1 + β(1 + α)
, ˆ̄x

(1)
=

1
1 + β

, (5.6)

with α and β given by Eq. (5.3b), and

λ = 1 + dL


s − c
L (1 − c) + (1 − L) (1 − s)

+
sˆ̄x

(1)
− c

L (1 − c) + (1 − L)(1 − sˆ̄x
(1)

)



+ (dL)2


s − c
L (1 − c) + (1 − L) (1 − s)



×


sˆ̄x

(1)
− c

L (1 − c) + (1 − L)(1 − sˆ̄x
(1)

)


. (5.7)

The coefficient of dL in Eq. (5.7) is clearly f (L) as defined in Eq. (5.5)
for the special case of l = 2. Using Eqs. (5.3) and (5.6), we find that
f (0) > 0 since c < s by assumption, and that f (1) < 0 provided
s/c < 2. We assume s/c < 2 in what follows. There is an (at least
one) interior root of f (L) = 0 in this case, which we denote by L∗.
Of the two terms in f (L∗), the first is positive, so the second term
must be negative. Hence, the coefficient of (dL)2 is also negative,
ensuring that L∗ is an ESS.

Next, the product of the mean fitnesses in generations 0 and 1
is given by the quadratic

g (L) = Ŵ (0)Ŵ (1)
= [L (1 − c) + (1 − L)(1 − s)]2

+ L (1 − L) s(1 − c). (5.8)

Clearly, g (0) = (1 − s)2, g (1) = (1 − c)2, and g(L) has a maxi-
mum between 0 and 1, as shown schematically in Fig. 2. If Rogers’
paradox occurs, then we should have g (L∗) = (1 − c)2. Unfortu-
nately, although f (L) and g(L) are both simple functions of L, we
are unable to show analytically whether this is true or false. On the
other hand, we find on numerically solving f (L) = 0 for L∗ that
g (L∗) > (1−c)2. Thus, the product (or alternatively the geometric
mean) of the mean fitnesses is apparently greater for the interior
ESS than in a population using the L = 1 (pure IL) strategy, but is
not maximized.

3.2. Model 6: sampling the environment

We briefly describe a model due to Boyd and Richerson (1988,
1995), which we include here because it has a mathematical
structure that is quite similar toModel 5 (Wakano and Aoki, 2007).
The original formulation and analysis by Boyd andRicherson (1988,
1995) were based on a combination of the two-timescale (see
Model 3) and the information decay (see Model 4) approaches.

In this model, the environment fluctuates between two states.
Using a parameter µ, the two states are denoted µ > 0 and
−µ < 0. We assume that the temporal fluctuations occur peri-
odically, rather than with a given probability as in the model of
Boyd and Richerson (1988, 1995). An organism first samples the
environment by IL, and then resorts to oblique SL when the infor-
mation obtained is indecisive. More specifically, suppose that the
environment is in state µ > 0. Information, z, obtained on sam-
pling the environment is distributed normally as

φ (z) =
1

√
2πσ

exp

−

(z − µ)2

2σ 2


. (6.1)
Fig. 2. Product of the mean fitnesses in two successive generations (g(L)) plotted
against the probability of using individual learning (L) for the special case of Model
5 (mixed strategy model) with environmental period 2(l = 2). L∗ denotes the
evolutionarily stable probability of individual learning. Note that g (L∗) > (1− c)2 ,
whereas equality would hold if Rogers’ paradox were to apply.

Large positive values of z correctly suggest that the environment
is in state µ > 0, while moderately large negative values incor-
rectly suggest that the environment is in state −µ < 0. The resi-
dent strategy achieves the correct behavior by IL with probability

πC =


∞

d
φ (z) dz (6.2a)

when z exceeds a genetically determined threshold, d. Similarly, it
acquires the wrong behavior by IL with probability

πW =


−d

−∞

φ (z) dz (6.2b)

when z is small, and it resorts to SL with probability

K =

 d

−d
φ (z) dz (6.2c)

when z takes intermediate values. Hence K + πC +πW = 1, and
due to the way in which the three parameters are defined in
Eq. (6.2), only one is independent.

Analogous equations apply when the environment is in state
−µ < 0. For the mutant strategy, we substitute K + dK for K ,
πC +dπC forπC , andπW +dπW forπW , where dK+dπC +dπW = 0.

As before, we denote the frequencies among adults of the res-
idents with correct behavior, the residents with wrong behavior,
the mutants with correct behavior, and the mutants with wrong
behavior by x, x̄, y, and ȳ, respectively. Then, when the environ-
ment changes between generations,

Vx′
= (x + x̄) [K (x̄ + ȳ) + πC ] , (6.3a)

V x̄′
= (x + x̄) [K (x + y) + πW ] (1 − s), (6.3b)

Vy′
= (y + ȳ) [(K + dK) (x̄ + ȳ) + πC + dπC ] , (6.3c)

V ȳ′
= (y + ȳ) [(K + dK) (x + y) + πW + dπW ] (1 − s), (6.3d)

andwhen the environment remains constant between generations

Wx′
= (x + x̄) [K (x + y) + πC ] , (6.4a)

Wx̄′
= (x + x̄) [K (x̄ + ȳ) + πW ] (1 − s), (6.4b)

Wy′
= (y + ȳ) [(K + dK) (x + y) + πC + dπC ] , (6.4c)

Wȳ′
= (y + ȳ) [(K + dK) (x̄ + ȳ) + πW + dπW ] (1 − s). (6.4d)

Let the period of environmental fluctuations be l. Assuming that
dK , dπC , and dπW are small, Wakano and Aoki (2007) showed that
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the K = 0 (i.e., d = 0; pure IL) strategy is unstable if l > 2 and the
K = 1 (i.e., d → ∞; pure SL) strategy is always unstable. Hence,
at least one interior ESS, 0 < K ∗ < 1 (0 < d∗ < ∞), is predicted
for l > 2, and can be identified numerically.

A comparison of Eqs. (5.1) and (5.2) with Eqs. (6.3) and (6.4)
shows that Model 6 indeed has a similar mathematical structure
to Model 5, although there are two significant differences. First,
Model 6 assumes two environmental states as does Model 2, so
that the wrong behavior in the parental generation becomes the
correct behavior in the offspring generation after an environmental
change. Second, IL can result in the wrong behavior, but in Model
6 does not entail an exogenous cost measured by c in Model 5. The
model of Boyd and Richerson (1988, 1995) on which Model 6 is
based has often been interpreted as prescribing a learning schedule
in which IL is followed by SL. However, the similarities with Model
5 indicate that the sequential use of IL and SL is not a necessary
aspect of this learning strategy.

Boyd and Richerson (1995) find that the interior ESS is associ-
ated with a greater mean fitness than the K = 0 (pure IL) strat-
egy (i.e., Rogers’ paradox is resolved), but does not maximize the
mean fitness, which again is qualitatively similar to the result for
Model 5.

4. Population structure, spatially variable environment, and
migration

Spatial environmental heterogeneity such that migrating or-
ganisms will experience novel environments has been addressed
by Boyd and Richerson (1985, 1988, 1995), Henrich and Boyd
(1998), Rendell et al. (2010), Aoki (2010), Nakahashi et al. (2012)
among others. Here, we briefly review one dynamical model due
to Aoki and Nakahashi (2008), which permits a fairly complete
analysis.

4.1. Model 7: finite islandmodel with environmentally heterogeneous
sites

Organisms are of two genetically distinct types, individual
learners and social learners. They may occupy any of n equally-
connected sites in a spatially heterogeneous world. Each site has a
different environment. We distinguish n behaviors, each of which
is locally adapted to one particular environment but maladaptive
in the n − 1 other environments. Behaviors that are maladaptive
in all n environments are not incorporated into the dynamics. Let
Xij(1 ≤ i, j ≤ n) be the number of social learners at site i that
are adapted to the environment of site j. Then, at site i there are
Xi =

n
j=1 Xij social learners, of which Xii are behaving adaptively

(SLC), and Xi − X ii are behavingmaladaptively (SLW) at fitness cost
s. Similarly, let Zi(1 ≤ i ≤ n) be the number of individual learners
at site i. Individual learners always acquire the correct behavior,
but suffer an exogenous cost c. Write Ni = Xi + Zi for the total
population at site i. These numbers are enumerated at the adult
stage just prior to reproduction. Birth is followed by social learning,
migration, individual learning, and then viability selection, in that
order.

The life cycle begins with reproduction, where each organism
gives birth asexually to b (Ni) offspring according to the discrete
logistic

b (Ni) = 1 + r(1 − Ni/K). (7.1)

Here, the intrinsic growth rate, r > 0, and the carrying capac-
ity, K > 0, are assumed to be the same for all sites. Second, so-
cial learners acquire their behavior by copying a random member
of the parental generation at their site. As a result, the number of
social learners at site i that are adapted to the environment of site
j becomes

Xib (Ni)
Xij + Ziδij

Ni
, (7.2)

where δij = 1 for i = j and0otherwise. Allmembers of the parental
generation die immediately afterward. The third event is migra-
tion, where a fixed fraction of the organisms at each site emigrate
(constant forward migration rate). We assume reciprocal migra-
tion between all pairs of sites at ratem/(n−1)with 0 < m ≤ 1/2.
Fourth, the individual learners acquire the behavior suitable to
their environment. And fifth, viability selection occurs such that all
social learners behaving adaptively (SLC) survive, a fraction 1−s of
social learners behaving maladaptively (SLW) survive, and a frac-
tion 1 − c of individual learners survive, where 0 < c < s < 1.

The above assumptions entail that the difference equations for
this island model be written as

X ′

ii = (1 − m) Xib (Ni)
Xii + Zi

Ni
+

m
n − 1

n
k≠i

Xkb(Nk)
Xki

Nk
, (7.3a)

X ′

ij = (1 − s)


(1 − m) Xib (Ni)

Xij

Ni
+

m
n − 1

Xjb

Nj
 Xjj + Zj

Nj

+
m

n − 1

n
k≠i,j

Xkb(Nk)
Xkj

Nk


, (7.3b)

Z ′

i = (1 − c)


(1 − m)Zib (Ni) +

m
n − 1

n
k≠i

Zkb(Nk)


, (7.3c)

where 1 ≤ i, j ≤ n and i ≠ j in Eq. (7.3b). Consider, for
example, Eq. (7.3b). Noting Eq. (7.2), the three terms in parentheses
on the right hand side represent social learners – all with behavior
adapted to site j – that are natives of site i, immigrants originating
at site j, and immigrants originating at sites other than i and j,
respectively.

Using local stability analysis and heuristic arguments, Aoki and
Nakahashi (2008) identify four classes of stable equilibria of Eq.
(7.3), fixation of individual learners (X̂ii = 0, X̂ij = 0, Ẑi > 0;
class I), polymorphism of individual learners and social learners
(X̂ii > 0, X̂ij > 0, Ẑi > 0; class II), fixation of social learners
(X̂ii > 0, X̂ij > 0, Ẑi = 0; class III), and extinction (X̂ii = 0, X̂ij =

0, Ẑi = 0; class IV), which exist for mutually exclusive regions of
the parameter space of m and c (Fig. 3). A higher migration rate
between the environmentally heterogeneous sites of a subdivided
population is analogous to a greater instability of the temporally
changing environment, as pointed out by Boyd and Richerson
(1985, 1988, 1995). Clearly, the evolution of individual learners is
more likely at higher migration rates.

However, as we will show later in connection with learning
schedules and biased SL, rapid environmental change and high
migration rates do not necessarily ensure that (pure) IL will evolve.

Let us now consider Rogers’ question of whether the presence
of social learners – in addition to, or to the exclusion of, indi-
vidual learners – enhances the adaptedness of a population at
equilibrium. Total population size serves as a proxy measure of
adaptedness in this and some other models (Lehmann and Feld-
man, 2009; Rendell et al., 2010). From symmetry considerations,
the total population at the class II equilibria (stable polymorphism
of individual learners and social learners) is

nN̂ = nK [1 − c/r(1 − c)] , (7.4)
which is the same as when individual learners are fixed. At the
class III equilibria (stable monomorphism of social learners), on
the other hand, the total population size exceeds the value given
by Eq. (7.4). Hence, Rogers’ paradox is observed in the former case,
but is resolved in the latter.
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Fig. 3. Heuristic diagram showing the four regions of the (m, c)-parameter space
(0 < m ≤ 1/2, 0 < c < s), corresponding to the four classes of stable equilibria
of Model 7 (finite island model with environmentally heterogeneous sites). Region
I: fixation of individual learners. Region II: polymorphism of individual learners
and social learners. Region III: fixation of social learners. Region IV: extinction.
Boundary between regions I and II: c = ms. Boundary between regions II and III: c =

m(1−θ), where θ =


m − s −

(1−s)m
n−1 +


m − s −

(1−s)m
n−1

2
+ 4 (1−s)m2

n−1


/(2m).

Boundary between regions II and IV: horizontal straight line c = r/(1 + r).
Boundary between regions III and IV: vertical straight line defined implicitly by
r = m(1 − θ)/ [1 − m(1 − θ)]. Other parameter values are s = 0.5, r = 0.4, n =

15, K = 100.

5. Learning schedules

With the possible exception of Model 6, all models considered
so far assume ‘‘one-shot’’ strategies in which an organism uses IL
and/or SLwith fixed probabilities throughout its life. In this section,
we consider models that allow for two learning stages per genera-
tion, in which the probabilities of using IL and/or SL can differ be-
tween the two stages. We assume an unstructured population of
infinite size with asexual reproduction.

5.1. Model 8: critical social learning

Enquist et al. (2007) introduce two novel strategies called ‘‘crit-
ical social learning’’ and ‘‘conditional social learning’’. Critical so-
cial learning is a learning schedule in which an organism first uses
SL. If the correct behavior is acquired by SL, where the organism is
assumed to be capable of judging whether it has succeeded in do-
ing so, no further learning occurs. However, if the wrong behavior
is acquired by SL, the organism next tries IL. In conditional social
learning, the order in which SL and IL are used is interchanged. For
both learning strategies, the exemplar in SL is chosen randomly,
and the occurrence of the second learning stage is contingent on
the outcome of the first.

In this section, we summarize their proof that critical social
learning can be an ESS in the absence of conditional social learners.
The competing strategies are then obligate individual learner, ob-
ligate social learner, and critical social learner. Enquist et al. (2007)
adopt the two-timescale approach, which assumes that cultural
evolution can be investigated with the genetic variables held con-
stant (see also Model 3). They obtain the frequency of the correct
behavior – they call this ‘‘the OK solution’’ – at the equilibrium of
the cultural dynamics, qOK, which they then use to calculate the
selection coefficients – fitnesses, in their terminology – of the com-
peting strategies.

Let us define the following parameters as in their model, using
a more compact notation: ε is the probability of environmental
change per generation (i.e., information decay rate, see Model
4), α is the probability that an individual learner acquires the
correct behavior, β is the probability that a social learner faithfully
copies the exemplar, ci is the exogenous cost of IL, and cs is the
exogenous cost of SL. Then, we can write the selection coefficients
of obligate individual learners, obligate social learners, and critical
social learners as

wi = α − ci, (8.1a)

ws = qOK(1 − ε)β − cs, (8.1b)

wsi = qOK (1 − ε) β − cs +

1 − qOK (1 − ε) β


(α − ci), (8.1c)

respectively. Note that wsi > ws if, as we assume, individual
learning is adaptive, i.e. α > ci.

To determine qOK from the cultural dynamics, we denote the
frequencies of obligate individual learners, obligate social learners,
and critical social learners – which are by assumption fixed during
cultural evolution – by qi, qs, and qsi, respectively, and the variable
frequency of the OK solution in generation t by qOKt . Then,

qOKt+1 = qiα + qsqOKt (1 − ε) β

+ qsi

qOKt (1 − ε) β +


1 − qOKt (1 − ε) β


α

. (8.2)

In deriving Eq. (8.2), the exogenous costs, ci and cs, that appear
in Eq. (8.1) have been ignored, using the standard assumption
of the two-timescale approach that selection is weak. Hence, at
equilibrium (obtained by setting qOKt+1 = qOKt = qOK), we have

qOK = α(1 − qs)/ {1 − (1 − ε)β [qs + qsi(1 − α)]} . (8.3)

Substitution of Eq. (8.3) into (8.1) yields the selection coefficients
of the three strategies, which depend on their frequencies, qi, qs,
and qsi.

Since wsi > ws holds by assumption for all frequencies, critical
social learner will be an ESS if wsi > wi when qsi = 1. Hence, the
condition for critical social learner to be an ESS is

ci > α − 1 + cs [1 − (1 − α) (1 − ε)β] / [α(1 − ε)β] . (8.4)

Clearly, Rogers’ paradox is resolved since wsi > wi at the evolu-
tionarily stable equilibriumwhere critical social learners are fixed.

5.2. Model 9: evolutionarily stable learning schedules with a
continuous phenotype

All models presented so far have assumed a dichotomous phe-
notype that is either correct or wrong. Here, we posit a con-
tinuous phenotype with a fitness optimum that depends on the
environmental state. The question of learning schedules was first
addressed by Boyd and Richerson (1985), who introduced a learn-
ing strategy or process (in this latter context) that they called
‘‘guided variation’’. Guided variation entails that an organism ac-
quires its ‘‘initial phenotype’’ by SL – from the parental generation
according to a ‘‘blending rule’’ – which is then adaptively modified
by IL to yield the ‘‘mature phenotype’’. Such a strategy permits a
gradual and cumulative improvement of the phenotype over gen-
erations.

IL or SL or a mixture of the two can be sequentially combined in
an infinite number of ways to form a learning schedule. Aoki et al.
(2012) used a method informed by optimal control theory to ask
what the evolutionarily stable learning schedules would be under
various regimes of environmental change.

Suppose that there are two learning stages per discrete genera-
tion, stage-0 and stage-1 learning. Genetically determined learning
strategies assignweights between 0 and 1 to the information gath-
ered by IL and by SL during each stage. The phenotype of a naïve
newborn before any learning occurs will be called the ‘‘initial phe-
notype’’ and is set to 0. We refer to the phenotype after stage-0
learning as the ‘‘intermediate phenotype’’ and the phenotype af-
ter stage-1 learning as the ‘‘mature phenotype’’. These terms are
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used differently here from Boyd and Richerson (1985). With each
learning strategy are associated one intermediate phenotype and
one mature phenotype that are sequentially expressed. Only the
mature phenotype contributes to fitness. Post-learning organisms
reproduce in proportion to their fitness (fertility selection) and sur-
vive to serve as exemplars (i.e., cultural parents) for the next gen-
eration.

Inwhat follows, we deal onlywith the situationwhere the envi-
ronment undergoes periodic changes twice per generation, i.e., be-
tween birth and stage-0 learning, and between stage-0 learning
and stage-1 learning. The optimal phenotype is−z∗ during stage-0
learning, whereas it is z∗ during stage-1 learning and reproduction.
Since the initial phenotype is set to 0, this requires a special as-
sumption regarding the phenotypic scale. The target for IL in each
learning stage is the optimal phenotype in that learning stage. The
target for SL is always the mature phenotype of the previous gen-
eration if the population is genetically monomorphic, or the pop-
ulation mean of the mature phenotypes if more than one learning
schedule is segregating. The efficiencies of IL and SL during stage-
i learning are αi and βi(i = 0, 1), respectively, where efficiency
is defined as the proportional reduction in the deviation from the
target and assumed to be the same for all learning strategies. We
assume 0 < αi, βi < 1 (i = 0, 1), which entails that the mature
phenotype approaches, but never converges to, the optimal phe-
notype.

First, we consider a population that is monomorphic for the
resident learning strategy, letting zt be the mature phenotype in
generation t . This strategy assigns weight ui (called the control) to
IL and complementary weight 1 − ui to SL during stage-i learning,
where 0 ≤ ui ≤ 1(i = 0, 1). In generation t + 1, pure IL would
produce the phenotype −α0z∗ during stage-0 learning, whereas
pure SL would yield the phenotype β0zt . Hence, taking the weights
into consideration, we have the intermediate phenotype

z intt+1 = −u0α0z
∗
+ (1 − u0)β0zt . (9.1)

On further application of pure IL during stage-1 learning, the
incremental change in the phenotype would be α1(z∗

− z intt+1),
because the optimal phenotype and hence the target for IL has
changed to z∗. Pure SL during stage-1 learning would produce the
incremental change β1(zt − z intt+1). Thus, the mature phenotype is

zt+1 = z intt+1 + u1α1(z∗
− z intt+1) + (1 − u1)β1(zt − z intt+1). (9.2)

Substituting Eq. (9.1) into (9.2), the difference equation in the
mature phenotype across generations can be written as

zt+1 = Azt + Cz∗, (9.3a)

where

A = (1 − u0) β0 [1 − u1α1 − (1 − u1) β1] + (1 − u1) β1, (9.3b)
C = u1α1 − u0α0 [1 − u1α1 − (1 − u1) β1] . (9.3c)

At equilibrium of the cultural dynamics described by Eq. (9.3), we
have

ẑ = Cz∗/(1 − A). (9.4)

Next, introduce a rare mutant strategy of small effect into the pop-
ulation of resident strategists at this equilibrium. Denote the con-
trol for this mutant strategy by um

i (i = 0, 1), and let Am and Cm be
the functions of um

i (i = 0, 1) obtained by substituting ui = um
i (i =

0, 1) in Eqs. (9.3a) and (9.3b), respectively. Then, the mature phe-
notype of the mutant strategy is given approximately by

zm = Amẑ + Cmz∗. (9.5)

The method for determining an evolutionarily stable control,
u∗

i (i = 0, 1), prescribes that we define an objective function,
which gives the fitness of a mutant strategy introduced at low fre-
quency into the population of resident strategist at equilibrium
(Maynard Smith, 1982). Specifically, we assume an objective func-
tion of the Gaussian form,

F

um
0 , um

1 , u0, u1


= exp

−

(zm − z∗)2

w


, (9.6)

where zm is given by Eq. (9.5). Eq. (9.6) formalizes the assumption
that deviations from the optimal phenotype, z∗, are penalized,with
an intensity of selection inversely proportional to w.

An evolutionarily stable control, u∗

i (i = 0, 1), is one such that
F

um
0 , um

1 , u0, u1

takes a (local) maximum when um

0 = u0 = u∗

0
and um

1 = u1 = u∗

1 . Set

s0 =
∂F
∂um

0


um0 =u0, um1 =u1

, (9.7a)

s1 =
∂F
∂um

1


um0 =u0, um1 =u1

, (9.7b)

which represent the selection gradients on the mutant control for
stage-0 and stage-1 learning, respectively. In Appendix F, we show
that s0 < 0 and s1 > 0 for all values of u0 and u1. Hence, there is
only one evolutionarily stable control, which is u∗

0 = 0, u∗

1 = 1.
In words, when the environment changes twice per generation –
between birth and stage-0 learning, and between stage-0 learning
and stage-1 learning – we predict an evolutionarily stable learning
schedule where pure SL is followed by pure IL, which is equivalent
to guided variation. Note that, this schedule incorporates SL in spite
of the highly changeable environment.

The fitness of a genetically monomorphic population at the
cultural equilibrium, ẑ, is given by

W (ẑ) = exp

−

(ẑ − z∗)2

w


, (9.8)

which is of the same form as Eq. (9.6). To obtain the fitness of a
population using the evolutionarily stable strategy, we substitute
u0 = u∗

0 = 0 and u1 = u∗

1 = 1 in Eq. (9.3) and then use Eq. (9.4) to
compute ẑ. This yields

ẑ =
z∗α1

1 − (1 − α1)β0
, (9.9)

and it can be shown that this value of ẑ maximizes W (ẑ). Hence,
any other control including the pure IL strategy (u0 = 1, u1 = 1)
is associated with a lower fitness at the cultural equilibrium. Thus,
Rogers’ paradox is not observed in this model.

6. Biased social learning

The previous models all assume that SL occurs from a random
member of the parental generation (unbiased or random SL). The
empirical literature sometimes suggests that organisms choose
their exemplar(s) according to certain criteria such as conformity
or perceived success (e.g., Mesoudi, 2009; Henrich and Broesch,
2011; Chudek et al., 2012). In this section, we review a model due
to Nakahashi et al. (2012) that investigates the conditions under
which such biases in SL may evolve.

6.1. Model 10: conformist and payoff bias with spatial environmental
heterogeneity

Nakahashi et al. (2012) extend Model 7 by the simultaneous
introduction of two new SL strategies, conformist bias and payoff
bias, which are in competition with each other andwith individual
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learners and unbiased social learners. As before, there are n
environmentally different sites, each associated with a behavior
that is correct there but equally wrong at the n − 1 other sites.
Migration at rate m occurs among the sites after SL but before
individual learning. An individual learner always achieves the
correct behavior, but suffers an exogenous cost c. The cost ofwrong
behavior for an unbiased social learner is s.

Social learning is said to exhibit conformist bias when the prob-
ability that a common phenotype – or the majority phenotype
when there are only two options – is adopted exceeds the fre-
quency of that phenotype among the possible exemplars. Specif-
ically, let bij be the frequency of organisms at site i with behavior
adapted to site j in the parental generation, where

n
j=1 bij = 1

for each i. Then, an organism of the offspring generation using the
conformist bias strategy at site i acquires the behavior adapted to
site j with probability

ρij =

bij
a

/

n
k=1

(bik)a , (10.1)

where a > 1. When a → ∞, as is assumed here, the most com-
mon behavior at site i is copied. In particular, if bii > bij for each
j ≠ i, then ρii → 1, so that the locally correct behavior is copied
with probability one in this case.

Payoff bias, on the other hand, is a strategy in which the
locally correct behavior is always copied. An organism using the
payoff bias strategy will acquire the behavior adapted to its natal
site. Such behavior always exists provided individual learners are
initially present in the population.

Nakahashi et al. (2012) assume exogenous costs d to conformist
bias and g to payoff bias, in addition to a cost s for the wrong
behavior. Hence, for example, the fitness of an organism with the
payoff bias strategy that has acquired the wrong behavior – i.e., all
migrants – will be (1 − g)(1 − s). It is assumed that

0 < d < g < c < s < 1. (10.2)

In particular, inequalities (10.2) entail that the payoff bias is more
costly to implement than the conformist bias.

Nakahashi et al. (2012) derive conditions for the local stability of
monomorphic and polymorphic equilibria at which the conformist
bias exists. They find that a high cost of IL (large c) in conjunction
with a high migration rate (large m) favor the evolution of
conformist bias. Thus, high migration rates do not necessarily
favor IL when in competition with biased SL. On the other hand,
fixation of payoff bias is unstable if d < g , as is assumed, and
polymorphisms involving the payoff bias strategy are either not
possible or are unstable when they exist. Hence, payoff bias can
never evolve. The intuitive reason for this latter result is that the
frequency of the correct behavior at a site eventually exceeds the
frequency of any one of the n−1wrong behaviors—i.e., bii > bij for
each j ≠ i. Thus, both conformist bias and payoff bias will achieve
the correct behavior, but the former strategy suffers a smaller
exogenous cost and so out-competes the latter (given d < g).

7. Emergence of learning

We have reviewed ten models for the evolution of learning
strategies in species where IL and SL are already well-established.
In doing so, we have ignored the possibility that the phenotype
(behavior) may be innately determined. We now consider
conditions for the emergence of a partial reliance on learning.

7.1. Model 11: mixed strategy model that includes innate behavior

Wakano and Aoki (2006) proposed an extension of Model 5 to
include innate behavior. As in Model 5, the environment changes
every l generations to a previously unknown state. However, this
extended mixed strategy model has several differences. First, an
organism with the resident strategy uses SL with probability K , IL
with probability L, and acts innately with probability 1 − K − L.
The corresponding probabilities for the mutant strategy are K +

dK , L + dL, and 1 − K − dK − L − dL, respectively.
Second, there is a genetic locus (other than the locus that de-

termines the strategy), which carries the phenotypic information
that is expressedwhen the organism behaves innately.We call this
genetic locus the ‘‘innate information’’ locus and assume that it
has many alleles, which can be classified into those that produce
adaptive behavior and those that producemaladaptive behavior in
a given environment. A small subset amounting to a fraction ρ of
each class has the special property of producing different behav-
iors before and after an environmental change. In particular, these
rare variants produce adaptive behavior in the post-change gen-
eration(s) – they can be regarded as pre-adapted alleles awaiting
an environmental change – but the behavior they produce in the
pre-change generation(s) is maladaptive as viewed from the post-
change generations(s).

Third, an organism behaving innately and expressing the cor-
rect behavior is assigned a fitness of 1. Relative to this phenogeno-
type, SL and IL have exogenous costs d and c , respectively. An
additional cost, s, accrues to an organism behaving innately or us-
ing SL that has acquired the wrong behavior. By assumption, IL al-
ways results in the correct behavior. These costs are additive, such
that an organism using SL with the wrong behavior, for example,
has fitness 1 − d − s. Moreover,

0 < d < c < s < d + s < 1. (11.1)

We now consider the conditions for a mutant strategy that
relies on a small amount of learning to invade a population that
is monomorphic for the pure innate resident strategy. In terms of
the probabilities of using SL and/or IL, the resident strategy can be
defined as K = L = 0. Then, the corresponding probabilities for
the mutant strategy are dK and dL, respectively, where dK and dL
are small and non-negative, and at least one is positive. For small
dK and dL, the eigenvalue takes the approximate form

λ = 1 + CKdK + CLdL, (11.2)

and the invasion condition is λ > 1.
Wakano and Aoki (2006) show that CK < 0. Hence, CL > 0 and

dL > 0 are necessary conditions for invasion. The latter inequality
entails that a small amount of SL in isolation (dK > 0, dL = 0)
confers no selective advantage over the pure innate strategy, so
that a successfulmutant strategymust have an IL component (dL >
0). Furthermore, CL > 0 if and only if

η(l)
η(l − 1)

< 1 − c, (11.3a)

where we define

η (l) = ρ + (1 − ρ)(1 − s)l. (11.3b)

The ratio η(l)
η(l−1) is monotone increasing in l, with η(1)

η(0) = ρ + (1 −

ρ)(1 − s) and liml→∞
η(l)

η(l−1) = 1. Hence, provided

ρ + (1 − ρ) (1 − s) < 1 − c, (11.4)

there exists a unique integer lM ≥ 1 such that (11.3) is satisfied for
l ≤ lM . Restated, the pure innate strategy is evolutionarily stable if
inequality (11.4) is reversed or if l > lM .

Inequality (11.4) can be rewritten as

c < (1 − ρ) s. (11.5)

The left hand side of inequality (11.5) is the exogenous cost of IL.
The right hand side is the fitness loss to innate behavior due to the
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expression of non-adapted alleles at the innate information locus
immediately after an environmental change. Thus, the conditions
that favor the emergence of learning are (1) a small exogenous cost
of IL, (2) a high cost of wrong behavior, (3) a low frequency of pre-
adapted alleles at the innate information locus, and (4) a change-
able environment. In addition, learning must include some IL.

8. Discussion

8.1. Comparing the dynamicalmodels in temporally variable environ-
ments

Models 1, 2, and 4 are three basic dynamicalmodels for the evo-
lution of obligate individual learners and obligate social learners in
temporally variable environments. They produce predictions that
differ both qualitatively and quantitatively, the main distinction
being between Models 2 and 4 for which fixation of social learners
can be stable, and Model 1 for which it cannot. The contradictory
predictions can be related to the different assumptions. Models 2
and 4 allow for some of the behaviors occurring in the parental
generation to remain adaptive in the offspring generation. On the
other hand, Model 1 posits that none of the preexisting behaviors
can be adaptive after an environmental change. Model 1 has the
merit of being relatively easy to analyze. However, Models 2 and 4
may be better representations of reality, at least in the sense that
some continuity in what makes a behavior adaptive across gener-
ations is permitted.

As noted above, fixation of social learners can be stable in
Models 2 and 4. At such equilibria, social learners with the correct
behavior (SLC) and social learners with the wrong behavior (SLW)
coexist at whatmay loosely be described, in analogywith genetics,
as a ‘‘mutation–selection balance’’. Moreover, since there is no
input of novel behaviors by IL, the same correct behavior and
the same wrong behavior are maintained indefinitely. Specifically,
Model 2 produces periodic fluctuations in the frequencies of the
two behaviors, whereas Model 4 entails that they are constant. In
neither case can there be sustained cultural change. Nevertheless,
the mean fitness of the population at such equilibria will be
higher than at the other possible equilibria, including fixation of
individual learners. Hence, Rogers’ paradox is resolved, but this
result arguably introduces another paradox, in that the highest
mean fitness is associated with a population that does not evolve
culturally.

The threemodels are deterministic and have in common the as-
sumptions that the environment changes at regular intervals and
population size is infinite. Aoki et al. (2005) conductedMonte Carlo
simulations of an extended version of Model 1 that includes innate
determination of behavior as a third alternative. In these simula-
tions, the environment changes between generations with proba-
bility p – as measured by a uniformly distributed pseudo-random
number – so that on average the environment changes every 1/p
generations. As expected, they found that the equilibrium frequen-
cies of individual learners, social learners, and innate determina-
tion depended on 1/p in the same way as on the fixed period
of environmental change, l, in the deterministic model. Specifi-
cally, individual learners, social learners, and innate determination
were favored by natural selection when environmental changes
occurred at short, intermediate, and long intervals, respectively.

We note in passing that the simple forms of vertical transmis-
sion (i.e. SL from parents) are congruent with innate determina-
tion. Hence, it comes as no surprise whenMcElreath and Strimling
(2008) find that vertical transmission, where one of the two par-
ents is copied with equal probability, should be selectively favored
when the environment is stable.

Rendell et al. (2010) conducted agent-based simulations on the
evolution of various SL strategies (pure, critical, and conditional SL)
in a finite population with stochastic temporal changes of the en-
vironment. More specifically, their model posits that organisms in
this population inhabit cells on a lattice that are arranged as a two-
dimensional torus. We will have more to say on this study when
we discuss the effects of population structure. Here, we consider
their results obtained under the global conditions (SL occurs from
a randomly chosen member of the population) and when all cells
are in the same environmental state at any one time. In the com-
petition between pure social learners and pure individual learners,
Rendell et al. (2010) find that the frequency of social learners and
the mean fitness at polymorphic equilibrium, obtained from their
simulations, are in good ‘‘qualitative’’ agreement with the analyti-
cal predictions of Rogers (1988) and Enquist et al. (2007). However,
they also indicate that the frequency of social learners is lower than
expected, whereas the mean fitness is higher.

It is not clear to us how the analytical predictions of Rogers
(1988) and Enquist et al. (2007) on the frequency of social learn-
ers at equilibriumwould apply, because the model of Rendell et al.
(2010) differs in various respects, such as the number of environ-
mental states and the possible transitions among them. However,
the mean fitness of the population when individual learners are
fixed is 1 − c in all three models, where c (ca in their notation)
is the exogenous cost to individual learners, providing a point of
comparison. As noted above, Rendell et al. (2010) find that the
mean fitness at polymorphic equilibrium ismarginally higher than
1−c , suggesting that Rogers’ paradox is resolved. These authors do
not attribute this discrepancy to environmental stochasticity or fi-
nite population size. Rather, they argue that the difference may be
caused, for example, by their use of the coevolutionary approach
in their simulations, as opposed to the two-timescale argument
favored by Rogers (1988) and Enquist et al. (2007). This interpre-
tation is consistent with what we have shown in this paper, that
Rogers’ paradox is inherent in the two-timescale method at least
as applied to the evolution of pure strategies (Model 3), whereas it
can be resolved in a coevolutionary model with two (Model 2) – or
a finite number (Model 7) of – environmental states.

8.2. ESS mixed strategy models in temporally variable environments

Models in which an organism can engage in both IL and SL
are arguably more realistic than those that assume it can only do
one or the other. The goal with these mixed strategy models is to
investigate the dependence of the evolutionarily stable probability,
L, of using IL (as in Model 5) – or the complementary probability,
K , of using SL (as in Model 6) – on the environmental variability.

Model 5, which assumes an infinite number of environmental
states, is the direct analog of the dynamicalmodel, Model 1. Hence,
it comes as no surprise that the ESS value of L predicted byModel 5
depends on the environmental variability in qualitatively the same
way as the equilibrium frequency of obligate individual learners
does in Model 1. Specifically, both increase as the environmental
stability decreases, such that total reliance on IL (L = 1) and fix-
ation of individual learners can both be stable if the environment
is sufficiently changeable. On the other hand, total reliance on SL
(L = 0), or equivalently fixation of social learners, cannot be sta-
ble in eithermodel. However, Rogers’ paradoxwas seen to occur in
Model 1, but to be eliminated in Model 5—for the latter model, the
geometric mean of the mean fitnesses is higher at an interior ESS
than in a population with L = 1. The reason for this discrepancy
remains unclear.

Model 6 is the coevolutionary version of a model described
by Boyd and Richerson (1988, 1995) for fluctuating environments
(Wakano and Aoki, 2007). The original model was formulated and
analyzed by a combination of the two-timescale and information
decay approaches. The ESS analysis of Model 6 agrees qualitatively
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with Boyd and Richerson (1988, 1995) in finding that the total re-
liance on SL (K = 1) cannot be an ESS, whereas the total reliance
on IL (K = 0) can in a rapidly fluctuating environment. At inter-
mediate levels of environmental variability, an organism evolves
to depend on both IL and SL. Hence, the original and reformulated
models would appear to produce qualitatively consistent predic-
tions.

In the model of Boyd and Richerson (1988, 1995), the mean
fitness associated with an ESS mixing IL and SL is greater than the
mean fitness of the pure IL strategy. We suspect Rogers’ paradox
is also resolved in Model 6, since it has a mathematical structure
similar to Model 5, for which we have already seen that Rogers’
paradox does not occur. Boyd and Richerson (1995) argue that
Rogers’ paradox is resolved in their model, because increased
reliance on SL has the effect of improving the accuracy of IL
(i.e., reducing the probability that the wrong behavior is acquired
when IL is used), as suggested by their Fig. 3. We have no reason
to question this interpretation. However, it should be noted that
Rogers’ paradox is also eliminated in Model 5, where IL always
results in the correct behavior regardless of the degree of reliance
on SL.

8.3. Spatially variable environment

Model 7 addresses the effect of spatial environmental hetero-
geneity on the evolution of obligate individual learners and obli-
gate social learners. The habitableworld comprises a finite number
of islands, each with a different environment and among which
organisms may migrate. All stable equilibria of this determinis-
tic model are symmetric; that is the numbers of individual learn-
ers, SLC, and SLW are the same at all sites. Fixation of individual
learners, polymorphism of individual learners and social learners,
fixation of social learners, and extinction are the possible stable
equilibria. Let us take a horizontal transect through Fig. 3 at a value
of the exogenous cost to individual learners, c , that is small relative
to the cost ofmaladaptive behavior, s. Thenwe can see that fixation
of social learners is stable for small values of the migration rate,m,
polymorphism of individual learners and social learners is stable
for intermediate values of m, and fixation of individual learners is
stable for large values ofm. In addition, it can be shown that the to-
tal population size is greater at the stable monomorphism of social
learners than at the coexisting unstable monomorphism of indi-
vidual learners, which can be interpreted as indicating that Rogers’
paradox is resolved.

Let us compare these observations with the findings of Rendell
et al. (2010) from their agent-based simulations. Their treatment
of the competition between individual learners and pure social
learners under the local conditions (SL occurs from neighbors and
dispersal is limited to neighboring sites) with spatial variation in
the environment corresponds most closely to the postulates of
Model 7. An important parameter in the model of Rendell et al.
(2010) is the spatial correlation, pn, defined as the probability
that neighboring cells have the same environmental state. Small
values of pn in this model would appear to be analogous to large
values of m in Model 7. This is because smaller values of the
spatial correlation entail that a newborn social learner is more
likely to be exposed to a neighbor that has experienced a different
environmental state from its own. Similarly, highermigration rates
entail that a newborn social learner is more likely to acquire its
behavior from an immigrant with locally maladaptive behavior.

Rendell et al. (2010) find that the proportion of social learners
at equilibrium increases as pn increases (see their Fig. 4).
Moreover, social learners can be ‘‘effectively fixed’’—their model
includes mutation among the strategies. These results mirror the
predictions of Model 7 when we note the analogy between pn and
m. Rendell et al. (2010) also claim that Rogers’ paradox does not
apply when the spatial correlation is high and social learners are
effectively fixed. This result is what we would expect from our
analysis of Model 7, but is apparently at odds with their Fig. 4 for
the case that a social learner does not initially learn from its parent.

8.4. Learning schedules and cumulative culture

Boyd and Richerson (1985)were the first to dealwith the evolu-
tion of learning schedules. In theirmodel of guided variation, a con-
tinuous cultural trait is acquired by a two-step process,whereby an
initial phenotype that is acquired by oblique SL is adaptivelymodi-
fied by IL to yield the mature phenotype. These authors rely on the
two-timescale approach to predict the ‘‘evolutionary equilibrium’’
contributions of SL and IL to the mature phenotype. Enquist et al.
(2007) introduced a strategy called critical social learning, which
also entails that SL occurs before IL.

Learning schedules are of particular interest as they relate to the
possibility of cumulative culture. By cumulative culture we mean
a cumulative improvement in the adaptiveness of a cultural trait,
although the term can also describe an increase in the number of
adaptive cultural traits. A learning schedule in which each organ-
ism accurately absorbs an extant variant of a cultural trait by SL
and then builds on it by IL – SL followed by IL – can be support-
ive of cumulative culture. In this regard, guided variation can re-
sult in a gradual and cumulative improvement of the phenotype
over generations. However, critical social learning cannot, because
this learning strategy entails that the behavior acquired by SL is re-
jected if it is judged to be maladaptive, in which case IL must occur
from scratch.

An explicit study of learning schedules in the context of cumula-
tive culture was made by Aoki et al. (2012), part of which has been
reproduced asModel 9. Themodel assumes two learning stages per
discrete generation in each ofwhich an organism can use IL, SL, or a
mixture of the two. Analysis ofModel 9 showed that if the environ-
ment is highly changeable, undergoing periodic fluctuations twice
per generation, the evolutionarily stable learning schedule com-
prised pure SL during the earlier learning stage and pure IL during
the latter. Pure SL followed by pure IL can also be the evolutionar-
ily stable learning schedule in a constant environment, depending
on the efficiencies of SL and IL (Aoki et al., 2012). Interestingly, a
mixture of IL and SL was never found to be evolutionarily stable
for either of the learning stages.

An ‘‘unrealistic’’ aspect of the model of Aoki et al. (2012) is the
prediction noted above that an organism should use only IL or SL
to the exclusion of the other during any one learning stage. This
result can, of course, be modified to be more consonant with ac-
tual learning behavior by introducing stage-dependent exogenous
costs to IL and/or SL. The guided variation model of Boyd and Rich-
erson (1985), on the other hand, allows for intermediate levels of IL
and SL at evolutionary equilibrium, even in the absence of exoge-
nous costs. Unfortunately, the two models are not really compara-
ble – neither model can be reduced to a special case of the other
– so that it is not possible to ascertain whether the contradictory
outcomes can be reconciled.

One reasonwhy the guided variationmodel sometimes predicts
intermediate levels of IL and SL may be that this model can be
interpreted as providing only one learning stage per generation,
instead of two learning stages as in the model of Aoki et al. (2012).
Thus, Eq. (4.9) of Boyd and Richerson (1985) defines a weighted
average of the phenotypes that are acquired by SL and IL, as
explained in further detail by these authors on page 97 of their
book. In fact, their Eq. (4.9) is compatible with the assumption
that SL and IL occur concurrently, rather than in some temporal
sequence. Hence, the intermediate levels of IL and SL arising from
this model may be congruent with the one-shot mixed strategies
observed in Models 5 and 6.
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8.5. Biased social learning

Conformist bias has been studied from the standpoint of evo-
lutionary theory and in psychological experiments. Evolutionary
theorists have provided several definitions of conformity in the
context of SL. Eq. (10.1) is suitable for dealing with the dynamics
of three or more culturally transmitted phenotypes (Lachlan et al.,
2004; Nakahashi, 2007). On the other hand, when there are only
two options, the probability that the focal variant – which exists at
frequency p – is chosen is usually written as

p + Dp (1 − p) (2p − 1),

where D is a parameter assumed to be positive (Boyd and Rich-
erson, 1985, p. 208). That is, the majority (minority) phenotype is
adopted with a probability greater (less) than its representation
in the population. Different formulations of conformist bias are
possible in finite populations, where, for example, each newborn
samples a relatively small number of exemplars from the parental
generation and adopts the majority phenotype in that sam-
ple (Eriksson et al., 2007; Aoki et al., 2011).

Empirical evidence for conformity in humans as defined above
– psychologists use a slightly different definition – is poor (Boyd
and Richerson, 1985, pp. 223–227; Eriksson and Coultas, 2009;
Eriksson et al., 2007; Claidière et al., 2012). On the other hand,
theoretical work shows that the conditions for the evolution of
conformist bias are not particularly stringent. For example, Model
10 predicts that a high migration rate in a spatially heteroge-
neous environment, in conjunction with a high cost of IL, favors
conformist bias. Nakahashi (2007), Wakano and Aoki (2007), and
Kendal et al. (2009) obtained an analogous result that conformity
is selected for when the environment changes rapidly in time.
Henrich and Boyd (1998) conducted a numerical study on a model
incorporating both spatial and temporal variability of the environ-
ment, and reached the conclusion that ‘‘conformist transmission
is favored under a very broad range of conditions’’. This may be
true, but it is also true that selection on conformist bias is often
extremely weak (Wakano and Aoki, 2007). Hence, conformist bias
may not necessarily evolve, even under conditions that favor it.
Eriksson et al. (2007) give additional reasons for doubting that con-
formist bias is a general phenomenon.

Payoff bias and direct bias are closely related concepts. Direct
bias can be defined as ‘‘a naïve individual (choosing) his/her exem-
plar (cultural parent) based only on the competence of that exem-
plar in the specific skill that is to be copied’’ (Kobayashi and Aoki,
2012). This definition is consistent with the one given originally
by Boyd and Richerson (1985, p. 137) and with the current usage
in the theoretical literature on cultural evolutionary rates (Powell
et al., 2009;Mesoudi, 2011). More generally, direct biasmeans that
a particular variant of a cultural trait is preferred and an individual
carrying that variant is identified and copied. The term payoff bias
makes more explicit the assumption that a phenotypic variant is
more likely to be adopted if it is associated with a higher fitness;
Boyd and Richerson (1985) were agnostic with regard to this as-
pect of direct bias. Payoff bias can take many forms. For example,
Model 10 due to Nakahashi et al. (2012) assumes that an organ-
ism implementing payoff bias always identifies and acquires the
(most) adaptive behavior, nomatter how low the frequency of that
behavior in the population. Alternatively, the fidelity of SL may be
set proportional to the fitness benefit from adopting the adaptive
behavior (Kendal et al., 2009).

Empirical studies in the laboratory (for review see Mesoudi,
2009; Chudek et al., 2012) and in the field (Henrich and Broesch,
2011) may suggest present-day humans are capable of payoff
and/or direct bias. Apparently, the evidence for direct and indirect
biases – the latter includes attraction to prestigious and/or
successful individuals (Boyd and Richerson, 1985) – is stronger
than for conformist bias. It is then ironic that Model 10 predicts
conformist bias will out-compete payoff bias in a spatially variable
environment. Nakahashi et al. (2012) also consider the temporal
infinite environmental states analog of Model 10, for which
they find that payoff bias can be maintained in the population.
Unfortunately, this model is not well formulated, since it assumes
the presence of individual learners from which the payoff bias
strategists can acquire the adaptive behavior, without explicitly
incorporating them into the dynamical equations. On the other
hand, Kendal et al. (2009), using the information decay approach
to model temporal environmental change (see Model 4), show
that payoff bias in competition with individual learners can
reach polymorphic frequencies. This latter result suggests that
Nakahashi et al. (2012) may be right for the wrong reasons.

Clearly, the evolution of biases in SL is an important issue
that needs to be pursued further. Such biases can interact with
population size to have a large effect on cultural evolutionary
rates and have been invoked to explain archeological observations
on changes in lithic traditions of various hominid species (Hen-
rich, 2004; Powell et al., 2009; Mesoudi, 2011; Aoki et al., 2011;
Kobayashi and Aoki, 2012).

8.6. Extensions

Our assumptions may be translated into the language of deci-
sion making and behavior. In most of the models (e.g., Models 1–5,
7, 10, 11), individual learners always make the correct decision
about what they would gain (in fitness) from the environment, but
usually pay a cost to do so. Social learners pay a cost when they
make an incorrect decision, in which case they behave inappropri-
ately for the environment they are in, and the latter cost is greater
than that paid by individual learners. For human learners, itmay be
difficult to discernwhich behavior should be ‘‘invented’’ as an indi-
vidual learner or ‘‘copied’’ as a social learner, because the optimum
behavior in a given environment may be difficult to identify. Kah-
neman and Tversky (1979) showed that in choosing between sets
of payoffs with different probabilities it is not always the highest
mean payoff that humans decide upon. In our terminology, it may
be very difficult to decide whom to copy in a given environment,
or what the payoffs to possible decision choices are. Quantifica-
tion of uncertainty and the probability of acting upon perceived
measures of uncertainty are features of evolution that are crucial
to learning, and in principle both should contribute to fitnesses of
different learning strategies.

A similar issue has been shown to arise in recent agent-based
models of SL and IL in uncertain environments. The context is
the producer–scrounger game, where some organisms, producers,
discover resources, and others, scroungers, then join themand take
advantage of the producers’ discoveries (Barnard and Sibly, 1981;
Giraldeau and Caraco, 2000). This game provides a frequency-
dependent situation inwhich IL and SL strategies can competewith
innate behavior, and the structure of the competitive environment
can be manipulated to give appropriate optimum combinations of
these strategies.

Arbilly et al. (2011) used this approach with an environment
they designed to have the highest payoff occur with the lowest
probability. In their simulations, agents learned in which patch
to forage either individually (as a producer) or socially (as a
scrounger) by observing or joining a producer, over many time
steps during the agents’ lifetimes. When the number of learn-
ing steps per lifetime was large enough, the social learners were
able to learn to forage on the high-payoff-low-probability food
sources, which resulted in their ultimately taking over the popu-
lation. Other such studies have shown that learners can invade a
population of non-learners (Dubois et al., 2010) and that if the pro-
ducer–scrounger dimorphism is not perfectly heritable, learners
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could come to dominate the population when the amount of re-
source was either fixed or fluctuating (Katsnelson et al., 2011).

Although these agent-based simulations involve complexities
of finite population size, multiple phenogenotypes and complex
environments, which preclude their representation by the recur-
sion systems that we would like to analyze formally, they provide
an informative complement to the mathematical analyses re-
viewed here. They also suggest avenues along which the math-
ematical models might profitably be developed, albeit in a more
abstract form.
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Appendix A. Infinite-states l-cycle model (Model 1)

Wesummarize the local stability analysis for the twomonomor-
phic equilibria.
1. ẑ(i) = 1 for 0 ≤ i ≤ l − 1.

When the environment changes between generations,

x′
+ y′

=
1 − s
1 − c

(x + y) .

When the environment does not change,

x′
+ y′

=
1

1 − c
(x + y) .

Hence after l generations,

x(l)
+ y(l)

=
1 − s

(1 − c)l

x(0)

+ y(0) .
Thus, this equilibrium is stable if 1−s

(1−c)l
< 1, i.e., if l < log(1−s)

log(1−c) .

2. ẑ(i) = 0, x̂(i) = 0, ŷ(i) = 1 for 0 ≤ i ≤ l − 1.
Assume that ẑ(i) = 0. Then Eq. (1.1) gives x̂(1)

ŷ(1)
= 0, and Eq. (1.2)

gives x̂(i+1)

ŷ(i+1) =
1

1−s ·
x̂(i)

ŷ(i)
for 1 ≤ i ≤ l − 1. Hence, ŷ(i)

= 1 for
0 ≤ i ≤ l − 1, when social learners are fixed.

After an environmental change,

x(1)
= 0, z(1)

=
1 − c
1 − s

z(0).

Without an environmental change,

x(i+1)
=

1
1 − s


x(i)

+ z(i) , z(i+1)
=

1 − c
1 − s

z(i).

Hence,


x(l)

z(l)


=


1

1 − s
1

1 − s
0

1 − c
1 − s


l−1 0 0

0
1 − c
1 − s


x(0)

z(0)



=

0 ∗

0

1 − c
1 − s

l

x(0)

z(0)


where ∗ indicates a non-zero quantity. The eigenvalues do not de-
pend on the order ofmatrixmultiplication (Caswell, 2001, pp. 350–
351), and since c < s the leading eigenvalue is larger than 1, and
the equilibrium is unstable.
Appendix B. Two-state l-cycle model (Model 2)

We identify the genetically monomorphic equilibria and deter-
mine their local stability conditions.

1. ẑ(i) = 1 for 0 ≤ i ≤ l − 1.
After an environmental change,

x′
+ y′

=
1 − s
1 − c

(x + y) .

Without an environmental change,

x′
+ y′

=
1

1 − c
(x + y) .

Hence after l generations,

x(l)
+ y(l)

=
1 − s

(1 − c)l

x(0)

+ y(0) .
Thus stable if 1−s

(1−c)l
< 1, i.e., if l < log(1−s)

log(1−c) .

2. x̂(i) + ŷ(i)
= 1 for 0 ≤ i ≤ l − 1.

The natural period of the periodic solutions is 2l as shown
below. After the first environmental change,

x(1)

y(1)
=

1
1 − s

·
y(0)

x(0)
.

During the subsequent l − 1 generations without change,

x(i)

y(i)
=

1
1 − s

·
x(i−1)

y(i−1)

where 2 ≤ i ≤ l. Similarly, after the second environmental change

x(l+1)

y(l+1)
=

1
1 − s

·
y(l)

x(l)
,

and during the following l − 1 generations of stasis,

x(l+i)

y(l+i)
=

1
1 − s

·
x(l+i−1)

y(l+i−1)

for 2 ≤ i ≤ l. Hence,

x(2l)

y(2l)
= (1 − s)−l

·
y(l)

x(l)
= (1 − s)−l

· (1 − s)l ·
x(0)

y(0)
=

x(0)

y(0)
,

which entails that there exist an infinite number of periodic solu-
tions of period 2l, each of which is neutrally stable (see eigenvalue
λ1 below).

Next, we consider the local stability of each of these periodic
solutions. Set y(i)

= ŷ(i)
+ ε

(i)
y , z(i)

= ε
(i)
z . After the first environ-

mental change,

W (0)
= (1 − c) ε(0)

z +

1 − s


1 − ŷ(0)

− ε(0)
y

 
1 − ε(0)

z


≈ 1 − s


1 − ŷ(0)

+ sε(0)
y + O


ε(0)
z


,

∴ ε(1)
y ≈

(1 − s)

1 − ε

(0)
z

 
1 − ŷ(0) − ε

(0)
y


1 − s


1 − ŷ(0)


+ sε(0)

y + O

ε

(0)
z

 −
(1 − s)


1 − ŷ(0)


1 − s


1 − ŷ(0)


≈ −

1 − s
1 − s


1 − ŷ(0)

2 ε(0)
y + O


ε(0)
z


ε(1)
z =

1 − c
1 − s


1 − ŷ(0)

 ε(0)
z .
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Without change,

W (i−1)
= (1 − c) ε(i−1)

z +

1 − s


ŷ(i−1)

+ ε(i−1)
y

 
1 − ε(i−1)

z


≈ 1 − sŷ(i−1)

− sε(i−1)
y + O


ε(i−1)
z


,

ε(i)
y ≈

(1 − s)

1 − ε

(i−1)
z

 
ŷ(i−1) + ε

(i−1)
y


1 − sŷ(i−1) − sε(i−1)

y + O

ε

(i−1)
z

 −
(1 − s) ŷ(i−1)

1 − sŷ(i−1)

=
1 − s

1 − sŷ(i−1)
2 ε(i−1)

y + O

ε(i−1)
z


,

ε(i)
z =

1 − c
1 − sŷ(i−1)

ε(i−1)
z .

Analogous equations hold for the next l generations. It follows that
the eigenvalues of the local stability matrix are

λ1 = (1 − s)2lµ2 and λ2 = (1 − c)2lµ,

where

µ =
1

1 − sx̂(0)


l−1
i=1

1
1 − sŷ(i)


·

1
1 − sx̂(l)


l−1
i=1

1
1 − sŷ(l+i)


.

Note that, µ is the reciprocal of the product of the mean fitnesses
over the 2l generations.

To evaluate these eigenvalues, we need to obtain the explicit
solution for the periodic equilibrium. Set K0 =

ŷ(0)

x̂(0)
and Kl =

ŷ(l)

x̂(l)
.

Then

1 − sŷ(i)
= (1 − s)

1 + (1 − s)−(i+1)K0

1 + (1 − s)−iK0

1 − sŷ(l+i)
= (1 − s)

1 + (1 − s)−(i+1)Kl

1 + (1 − s)−iKl

for 1 ≤ i ≤ l. Moreover,

1 − sx̂(0)
=

1 − s + K0

1 + K0

1 − sx̂(l)
=

1 − s + Kl

1 + Kl
.

Hence,

µ = (1 − s)−2l 1 + K0

1 + (1 − s)−lK0
·

1 + Kl

1 + (1 − s)−lKl
.

But

Kl =
ŷ(l)

x̂(l)
= (1 − s)l

x̂(0)

ŷ(0)
= (1 − s)lK−1

0 .

Hence,

µ = (1 − s)−2l 1 + K0

1 + K−1
l

·
1 + Kl

1 + K−1
0

= (1 − s)−2lK0Kl = (1 − s)−l,

which entails that the geometric mean of the mean fitnesses is√
1 − s.
Thus, we finally have

λ1 = 1 and λ2 =
(1 − c)2l

(1 − s)l
.

Since the corresponding eigenvectors are orthogonal, we conclude
that the fixation of social learners is stable to invasion by individual
learners if (1 − c)2 < 1 − s.
Appendix C. Probability of an even number of environmental
changes in t generations (Model 3)

Let q be the probability of an environmental change per gener-
ation, and set p = 1 − q. The probability of an even number of
environmental changes in t generations, including the case of no
change, is

π =


t
0


q0pt +


t
2


q2pt−2

+ · · · +


t
t


qtp0

when t is even, and

π =


t
0


q0pt +


t
2


q2pt−2

+ · · · +


t

t − 1


qt−1p1

when t is odd. In either case, we can rewrite π as

π =
1
2


(p + q)t + (p − q)t


.

In particular, if we set q = ε and p = 1 − ε, we obtain

π =
1
2


1 + (1 − 2ε)t


.

Appendix D. Fully polymorphic equilibria of the information
decay model (Model 4)

From Eqs. (4.1c) and (4.1d), we have at equilibrium

ẑ

1 − ẑ

 
c − s


ε + ŷ (1 − ε)


= 0.

Since 0 < ẑ < 1,

ŷ =
c − sε
s(1 − ε)

,

which is valid for sε < c. Next, from Eqs. (4.1a) and (4.1b), we have

x̂
ŷ

=
(1 − ŷ)(1 − ε)

(1 − s)

ε + ŷ (1 − ε)

 ,
from which we obtain

x̂ =
c − sε
s(1 − ε)

·
s − c

c(1 − s)
.

Hence,

ẑ = 1 − x̂ − ŷ =
(s − c)(ε − c)
c(1 − s)(1 − ε)

,

which is valid for c < ε. In summary, the fully polymorphic
equilibrium exists if sε < c < ε.

Next, using y = ŷ + εy and z = ẑ + εz as the variables for the
local stability analysis, the characteristic polynomial is

M (λ) =


c − sε

c
·
1 − ε − (s − c)
(1 − ε) (1 − s)

− λ −
c (1 − s)
s (1 − c)

(s − c) (ε − c)
(1 − ε) c (1 − s)

·
s (c − sε)
c (1 − s)

1 − λ

 .
Assuming real eigenvalues, we can write this as

M (λ) =


c − sε

c
·
1 − ε − (s − c)
(1 − ε) (1 − s)

− λ


(1 − λ)

+
c (1 − s)
s (1 − c)

·
(s − c) (ε − c)

(1 − ε) c (1 − s)
·
s (c − sε)
c (1 − s)

.

By assumption c < s, and the condition for existence is sε < c < ε.
Hence,

0 <
c − sε

c
·
1 − ε − (s − c)
(1 − ε) (1 − s)

< 1 and

c (1 − s)
s (1 − c)

·
(s − c) (ε − c)

(1 − ε) c (1 − s)
·
s (c − sε)
c (1 − s)

> 0,
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and both eigenvalueswill be positive and smaller than 1. Assuming
complex eigenvalues, on the other hand, we can rewrite the
characteristic polynomial as

M (λ) = λ2
−


1 +

c − sε
c

·
1 − ε − (s − c)
(1 − ε) (1 − s)


λ +

c − sε
c (1 − c)

,

where the constant term can be shown to satisfy 0 < c−sε
c(1−c) < 1.

Hence, the eigenvalues will be less than 1 in absolute value. Thus,
whether the eigenvalues are real or complex, the existence of the
equilibrium implies its stability.

Appendix E. Analysis of mixed strategy model with infinite-
states l-cycle (Model 5)

To prove that the periodic equilibrium of the resident type is
given by Eq. (5.3), we note from Eqs. (5.1a) and (5.1b) that

1

ˆ̄x
(1) =

L (1 − c) + (1 − L) (1 − s)
(1 − L) (1 − s)

= α −
s

1 − s
,

and from Eqs. (5.2a) and (5.2b) that

1

ˆ̄x
(i) =

L (1 − c) + (1 − L)

1 − sˆ̄x

(i−1)
(1 − L) (1 − s) ˆ̄x

(i−1)

= α ·
1

ˆ̄x
(i−1) −

s
1 − s

for 2 ≤ i ≤ l. Hence

1

ˆ̄x
(i) = αi−1 1

ˆ̄x
(1) −

s
1 − s

i−2
j=0

αj

= αi
−

s
1 − s

i−1
j=0

αj

=
1 − α + β


1 − αi


1 − α

.

Next, we obtain the condition for invasion of the mutant type.
Adding Eqs. (5.1c) and (5.1d) gives

y(1)
+ ȳ(1)

= A

y(0)

+ ȳ(0) ,
where

A =
(L + dL) (1 − c) + (1 − L − dL) (1 − s)

L (1 − c) + (1 − L) (1 − s)
> 0.

Similarly, adding Eqs. (5.2c) and (5.2d) gives

y(i)
+ ȳ(i)

= B(i−1) y(i−1)
+ ȳ(i−1) ,

where

B(i)
=

(L + dL) (1 − c) + (1 − L − dL)

1 − sˆ̄x

(i)
L (1 − c) + (1 − L)


1 − sˆ̄x

(i) > 0.

Hence the residents will be invaded by mutants if

λ = A
l−1
i=1

B(i) > 1.
Appendix F. Sign of selection gradients in Model 9

The selection gradients are

s0 =
∂F
∂um

0


um0 =u0, um1 =u1

= −
2(ẑ − z∗)

w
exp


−

(ẑ − z∗)2

w


∂zm

∂um
0


um0 =u0,um1 =u1

,

s1 =
∂F
∂um

1


um0 =u0,um1 =u1

= −
2(ẑ − z∗)

w
exp


−

(ẑ − z∗)2

w


∂zm

∂um
1


um0 =u0,um1 =u1

.

It can readily be shown that

z∗
− ẑ = z∗

− zm|um0 =u0,um1 =u1 =
z∗ (1 − A − C)

1 − A
> 0,

where A and C are given by Eq. (9.3). Moreover,
z∗
−1 [1 − u1α1 − (1 − u1) β1]−1 (1 − A)

∂zm

∂um
0


um0 =u0, um1 =u1

= − {u1α1β0 (1 + α0) + α0(1 − β0) [1 − (1 − u1) β1]}

and
z∗
−1

(1 − A)
∂zm

∂um
1


um0 =u0, um1 =u1

= α1(1 − β1) [1 + u0α0 − (1 − u0) β0] .

Clearly,

∂zm

∂um
0


um0 =u0, um1 =u1

< 0 and
∂zm

∂um
1


um0 =u0, um1 =u1

> 0,

from which we conclude s0 < 0 and s1 > 0.
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