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Abstract

Self-fertilisation is widespread among hermaphroditic species across the tree of life.
Selfing has many consequences on the genetic diversity and the evolutionary dynamics
of populations, which may in turn affect macroevolutionary processes such as speciation.
On the one hand, because selfing increases genetic drift and reduces migration rate among
populations, selfing may be expected to promote speciation. On the other hand, because
selfing reduces the efficacy of selection, selfing may be expected to hamper ecological
speciation. To better understand under which conditions and in which direction selfing
affects the build-up of reproductive isolation, an explicit population genetics model is
required. Here, we focus on the interplay between genetic drift, selection and genetic
linkage by studying speciation without gene flow. We test how fast populations with
different rates of selfing accumulate mutations leading to genetic incompatibilities. When
speciation requires the population to pass through a fitness valley caused by underdomi-
nant and compensatory mutations, selfing reduces the depth and/or breadth of the valley,
and thus overall facilitates the fixation of incompatibilities. When speciation does not
require the population to pass through a fitness valley, as for Bateson-Dobzhanzky-Muller
incompatibilities (BDMi), the lower effective population size and higher genetic linkage
in selfing populations facilitates the fixation of incompatibilities. Interestingly, and
contrary to intuitive expectations, local selection does not always accelerate the build-up
of reproductive isolation in outcrossing relative to selfing populations. Our work helps
to clarify how selfing lineages may speciate and diversify over time, and emphasizes the
need to account for interactions among segregating mutations within populations to
better understand macroevolutionary dynamics.

Author summary

Hermaphroditic organisms may use their male gametes to fertilise their own female 1

gametes, and species vary greatly in how much they self-fertilise. Self-fertilisation induces 2

many genetic modifications in the population, which may ultimately affect the rates 3

at which lineages diversify. Here we aim to build predictions on how self-fertilisation 4

affects the rate at which reproductive isolation arises between geographically isolated 5

populations. Specifically, we develop theoretical models in which populations varying 6

in their rates of self-fertilisation may fixate mutations leading to reproductive isolation. 7
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We first explored scenarios in which reproductive isolation is made by mutations whose 8

fixations necessitate the population to experience temporally deleterious effects (i.e., a 9

fitness valley), and found that self-fertilisation reduces the breadth and depth of the 10

fitness valley and thereby overall facilitates the accumulation of such mutations. Second, 11

we explored scenarios in which genetic incompatibilities are caused by interactions 12

between derived alleles of different genes (i.e., BDMi). By allowing the BDMi to occur 13

within populations, we found that self-fertilisation reduces the manifestation of BDMi 14

within population, and thereby facilitates their fixation. This effect prevails even in the 15

face of local adaptation. Thus, our study clarifies how fast species are expected to arise 16

in self-fertilisation lineages. 17

Introduction 18

Species belonging to the same section or species group usually cross freely in 19

woody plants and perennial herbs, but are usually separated by incompatibility 20

barriers in annual herbs. [...] It is possible, therefore, that the correlation [...] 21

between sterility and life form is a reflection of a more fundamental relationship 22

between type of breeding system and the formation of sterility barriers” [1]. 23

The wide variety of mating systems observed in animals and plants, and also fungi 24

and algae, has multiple ecological and evolutionary consequences that might impact 25

higher-level evolutionary processes such as species extinction and speciation. For instance, 26

hermaphroditic species vary in their rate of self-fertilisation – spanning from obligate 27

outcrossing to predominant selfing species, and including all degrees of mixed mating [2–4] 28

– which has long been argued to affect macroevolutionary processes [5–9]. Because 29

selfing tends to reduce both the genetic diversity and the population adaptive potential, 30

selfing lineages have been argued to be ’evolutionary dead-ends’ as they are expected 31

to go extinct at faster rates than outcrossing lineages [5, 8, 10, 11]. The study of the 32

macroevolutionary effects of selfing has however mostly focused on species extinction, 33

while the effects of selfing on speciation has received relatively less attention, both 34

empirically and conceptually (but see [7, 9]). 35

The effects of selfing on speciation have been studied based on phylogenies. Phylo- 36

genetic trees with variation in mating system may allow us to estimate and compare 37

the rates of species diversification, and potentially speciation and extinction, in selfing 38

vs. outcrossing lineages (e.g., [12–15]). For instance, in the Solanaceae plant family, 39

outcrossing is enforced by a self-incompatibility mechanism that has broken down several 40

times, leading to multiple independent self-compatible lineages. Compared to the self- 41

incompatible lineages (i.e., obligate outcrossers), the self-compatible ones (i.e., potential 42

selfers) show lower diversification rates [16] which, interestingly, are likely to be caused by 43

higher rates of both speciation and species extinction in the selfing lineages [12]. Other 44

phylogenetic studies carried out in the Primulaceae [13] and in the Onagraceae [15] plant 45

families suggest that young selfing taxa experience a burst of speciation that fade away 46

with time (i.e., a ’senescing diversification rate’ [17]). In contrast, mixed evidence are 47

reported in the Polemoniaceae plant family, in which alternative phylogenetic methods 48

provide positive or no associations between selfing and speciation rates [14]. 49

The effects of selfing on speciation have also to some degree been studied based on 50

experimental crosses, addressing whether reproductive isolation (RI) between populations 51

evolves at different rates in selfing vs. outcrossing species. To our knowledge however, 52

there are only a few of such studies. For instance, in the Arctic flora, intraspecific 53

crosses between geographically isolated populations of eight predominantly selfing species 54

resulted in F1 hybrids with low pollen fertility and seed set, whereas no reduced fertility 55

was observed in the single outcrossing species for which successful crosses could be 56

made [18,19]. In the selfing species, it was estimated that RI may have developed over 57
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just a few millennia. The experimental crosses in one of these Arctic species, Draba 58

nivalis, were also used to address the genetic architecture of RI. Quantitative trait loci 59

analyses of F2 populations of this predominantly selfing species showed that the post- 60

zygotic incompatibilities are due to single-locus underdominance, a putative chromosomal 61

translocation, and nuclear-nuclear and cyto-nuclear epistatic incompatibilities [20,21]. 62

Theoretical expectations on the effects of selfing on speciation are poorly studied, and 63

not straightforward. This is because selfing impacts several interconnected population 64

genetics parameters that have opposite effects on speciation. First, selfing decreases 65

gene flow within and among populations, enhancing the isolation of populations and 66

thus possibly facilitating speciation [7]. Second, the non-random sampling of gametes 67

used for reproduction by selfing individuals reduces the effective population size. For 68

instance, the effective population size is expected to be halved in purely selfing species 69

compared to a randomly mating outcrossing species of the same population size [22, 23]. 70

A reduction of effective population size has cascading effects. It elevates genetic drift, 71

reduces genetic polymorphism, and overall weakens selection. Third, selfing increases 72

homozygosity, which makes recombination less efficient because homologous chromosomes 73

tend to be identical [23]. Thus, recombination breaks down linkage disequilibrium less 74

efficiently in strongly selfing populations, thereby reducing the evolutionary advantages 75

of recombination [24], and overexposing the populations to the deleterious effects of 76

linked selection, such as background selection [25], further reducing effective population 77

size in selfing populations [26,27]. 78

Here, we developed analytical and simulation models of population genetics to better 79

understand the effects of selfing on speciation. We did not consider the effects of gene 80

flow, but focused on the interplay between genetic drift, genetic linkage, and selection 81

efficacy. We studied how mutations leading to RI accumulate within populations differing 82

in selfing rates, and asked if selfing affects (i) the pace of speciation, and (ii) the genetic 83

architecture of RI. 84

We sequentially explored three types of mutations: underdominant mutations, com- 85

pensatory mutations, and Bateson-Dobzhansky-Muller incompatibility mutations. Un- 86

derdominant mutations have deleterious effects in the heterozygous state, but have no 87

deleterious effects in either homozygous state (which may for instance be due to structural 88

variants [28]). Compensatory mutations are a pair of mutations that are both deleterious 89

when they occur alone in a genome, but are neutral when they occur together [29] 90

(e.g., compensatory evolution of cis- and trans-regulation of gene expression [30–32]). 91

Finally, Bateson-Dobzhansky-Muller incompatibility (BDMi) mutations are a pair of 92

mutations that have no deleterious effects when they occur alone in a genome, but cause 93

genetic incompatibilities when they occur together [33–36]. Importantly, the fixation of 94

underdominant and compensatory mutations requires the population to pass through a 95

fitness valley in which mutations may be counter selected. In contrast, the fixation of 96

BDMi mutations may be neutral, or even positively selected when the mutations are ad- 97

vantageous [37]. Because homozygotes are formed more readily in selfing species, selfing 98

has previously been shown to facilitate the fixation of underdominant mutations [38]. It 99

is however unknown if and how selfing modulate the accumulation of mutations with 100

epistatic effects, such as compensatory and BDMi mutations. 101

Overall, we hypothesised that the effects of selfing on speciation depend on the mode 102

of speciation. If RI evolves through genetic drift, selfing should promote speciation 103

because underdominant and compensatory mutations are more likely to get fixed through 104

genetic drift in selfing lineages. In contrast, if RI evolves as a by-product of selection 105

(e.g., ecological speciation), we expect genetic incompatibilities to arise more readily 106

in outcrossing lineages because selfing populations have an overall lower efficacy of 107

selection. 108
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Methods 109

So far, the accumulation of BDMi in allopatry has mostly been modelled as a combina- 110

torial process of substitutions, each predicted by single-locus theory [36,37]. Extending 111

such results to selfing populations would be straightforward but partly misleading as 112

these models do not explicitly consider the underlying multi-loci population genetics 113

dynamics and the possible interactions among alleles that can be affected by selfing. 114

Instead, we studied the effects of selfing on speciation by modelling – in a single popula- 115

tion – the fate of different types of mutation that create genetic incompatibilities among 116

populations. Especially, we determined the probability of and the time to fixation of the 117

different categories of incompatibilities. The fixation of a single incompatibility mutation 118

is, in most cases, not sufficient to complete speciation but determines the overall pace at 119

which RI builds. We first studied the dynamics of a single (pair of) incompatibility and 120

then consider multi-loci models where mutations can occur recurrently throughout the 121

genome. 122

For all models, we considered a population of N hermaphroditic individuals repro- 123

ducing by selfing at rate 0 ≤ σ ≤ 1. The effective size of partially selfing populations is 124

given by Pollak [22]: 125

Ne =
N

1 + F
(1)

where F , the Wright’s fixation index, is: 126

F =
σ

2− σ
(2)

Note that the effective population size, Ne, can be further reduced in selfing popula- 127

tions due to background selection, which we included in the single-locus and two-loci 128

simulations (see Simulations). For multi-loci models, we assumed a recombination rate 129

r between adjacent loci and an equal mutation rate, µ, for all loci. We first analysed 130

the single-locus and two-loci models to characterize the underlying mechanisms. In 131

particular, we focused on the mean time to fix the first incompatibility allele or haplotype 132

under recurrent mutations, which can be decomposed into the mean waiting time of 133

occurrence of the first mutation destined to be fixed (Twait) and the mean fixation time 134

conditioned on fixation (Tfix): 135

T = Twait + Tfix (3)

Then we performed multi-loci simulations to assess how the results scale up the genome 136

scale. 137

Single-locus incompatibility 138

Underdominant mutations 139

This model has already been studied by Charlesworth [38] but we summarized it for 140

completeness and provided additional results. We considered a single bi-allelic locus, 141

with the ancestral allele A1 that can mutate to the derived allele A2 at rate µ. The 142

fitness of genotypes A1A1, A1A2, and A2A2 are 1, 1− su, and 1 + s, respectively, and 143

the frequency of allele A2 is noted x. 144

The change in allele frequencies in one generation is given by:

∆x = x(1− x)
(
(1− F )(2(2su + s)x− 2su) + Fs

)
/W

≈ x(1− x)
(
(1− F )(2(2su + s)x− 2su) + Fs

)
(4)
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Table 1. Glossary of the main notations

Symbol Biological meaning
N Population size
Ne Effective population size
σ Selfing rate
F Wright’s fixation index
µ Mutation rate
r Recombination rate
L Genome length (used in multi-loci simulation models only)
h Coefficient of dominance (besides genetic incompatibilities)
s Strength of selection (besides genetic incompatibilities)

hc, hB Coefficient of dominance of the compensatory and BDMi mutations
su, sc, sB Strength of selection of the underdominant, compensatory and

BDMi mutations
kc, kB Coefficient of dominance in double heterozygotes for compensatory

and BDMi mutations

where W is the mean fitness of the population, approximately equal to 1 when selection
is weak. Equation (4) can also be written as:

∆x ≈ 2(1− F )(2su + s)x(1− x)(x− xeq) if F < 1

≈ sx(1− x) if F = 1 (5)

with

xeq =
2su − F (2su + s)

2(1− F )(2su + s)

According to diffusion theory, the probability of fixation of a single A2 mutant is 145

given by: 146

Pfix =

∫ 1/2N

0
exp(− 2Mδx

Vδx
)dx∫ 1

0
exp(− 2Mδx

Vδx
)dx

(6)

whereMδx = ∆x is the expected infinitesimal change in allele frequency, and Vδx = x(1−x)
2Ne

147

is the expected infinitesimal variance. 148

Two-loci incompatibilities 149

We also considered models with two bi-allelic loci. A1 and A2, B1 and B2 denote the 150

ancestral and derived alleles at the first and second locus, respectively, and their respective 151

frequencies are x and 1− x, y and 1− y. We assumed the same mutation rate, µ, at the 152

two loci. The recombination rate between the two loci is 0 ≤ r ≤ 0.5, where 0 corresponds 153

to fully linked loci and 0.5 corresponds to loci located on different chromosomes with 154

Mendelian segregation. The frequency of the four haplotypes {A1B1, A1B2, A2B1, A2B2} 155

are noted as {X1, X2, X3, X4}, and the frequency of the ten genotypes, the combination 156

of haplotypes Xi and Xj , are noted as Gij with i ≤ j (for example G12 = [A1A1;B1B2]). 157

Note that we must distinguish G14 from G23, which correspond to identical genotypes 158

[A1A2;B1B2] but may differ in the haplotypes produced through gametogenesis. Changes 159

in genotype frequencies can be obtained as follows [38]: 160
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After meiosis, haplotype frequencies are given by:

X ′
1 = G11 +

1

2
(G12 +G13 + (1− r)G14 + rG23)

X ′
2 = G22 +

1

2
(G12 +G24 + (1− r)G23 + rG14)

X ′
3 = G33 +

1

2
(G13 +G34 + (1− r)G23 + rG14)

X ′
4 = G44 +

1

2
(G24 +G34 + (1− r)G14 + rG23)

After syngamy, genotypic frequencies are given by:

G′
11 = (1− σ)X ′2

1 + σ
(
G11 +

1

4
(G12 +G13 + r2G23 + (1− r)2G14)

)
G′

22 = (1− σ)X ′2
2 + σ

(
G22 +

1

4
(G12 +G24 + r2G14 + (1− r)2G23)

)
G′

33 = (1− σ)X ′2
3 + σ

(
G33 +

1

4
(G13 +G34 + r2G14 + (1− r)2G23)

)
G′

44 = (1− σ)X ′2
4 + σ

(
G44 +

1

4
(G24 +G34 + r2G23 + (1− r)2G14)

)
G′

14 = (1− σ)2X ′
1X

′
4 + σ

1

2
(r2G23 + (1− r)2G14)

G′
23 = (1− σ)2X ′

2X
′
3 + σ

1

2
(r2G14 + (1− r)2G23)

G′
ij = (1− σ)2X ′

2X
′
3 + σ

1

2
(Gij + r(1− r)(G14 +G23)) for other cases

Finally, after selection: 161

Gsel
ij =

wijG
′
ij∑

i≤j

wijG′
ij

(7)

where wij is the fitness of genotype Gij , which depends on the type of two-loci incompat- 162

ibility studied (see Compensatory mutations and BDMi mutations below). Note that in 163

either scenarios, we do not distinguish cis and trans effects on fitness (i.e., w14 = w23). 164

Compensatory mutations 165

We extended previous models of compensatory mutations [39, 40] by including the 166

effects of partial selfing. In brief, compensatory mutations at two loci can be viewed 167

as a generalization of the one-locus underdominant model presented above where two 168

haplotypes are equally fit, A1B1 and A2B2, but the intermediate paths, A1B2 and 169

A2B1 are deleterious. Thus, alike underdominant mutations, the evolution of pairs of 170

compensatory mutations requires to cross a fitness valley. 171

In the compensatory mutation models, we set the fitness of genotypes as follows:

w11 = w44 = 1

w22 = w33 = 1− sc

w12 = w13 = w24 = w34 = 1− hcsc

w14 = w23 = 1− hckcsc

where sc ≥ 0 and 0 ≤ hc ≤ 1 are the strength and the coefficient of dominance of the 172

deleterious effects of each mutation respectively, and kc is the coefficient of dominance 173

for the double heterozygous genotype A1A2B1B2. 174
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BDMi mutations 175

We extended the model of Kimura and King [41] by including the effects of partial 176

selfing. BDMi mutations generate genetic incompatibility only when an individual carries 177

both derived alleles. Thus, individuals carrying either derived alleles do not experience 178

deleterious effects, meaning that the fixation of BDMi mutations does not require to 179

cross a fitness valley. 180

In the BDMi mutations models, we set the fitness of the genotypes as follows:

w11 = 1

w12 = w13 = 1 + hs

w22 = w33 = 1 + s

w44 = (1 + s)(1 + s)(1− sB)

w24 = w34 = (1 + hs)(1 + s)(1− hBsB)

w14 = w23 = (1 + hs)(1 + hs)(1− hBkBsB)

where sB ≥ 0 and 0 ≤ hB ≤ 1 are the strength and the coefficient of dominance of the 181

genetic incompatibility between the two derived alleles A2 and B2 respectively, and kB 182

is the coefficient of dominance for the double heterozygous genotype A1A2B1B2. s ≥ 0 183

and 0 ≤ h ≤ 1 are the strength of selection and the coefficient of dominance of the local 184

adaptation. For the standard BDMi model s is set to 0, and s > 0 only when we assume 185

that BDMi mutations are also driven by local adaptation. 186

Simulations 187

We also developed, first, single-locus (underdominance mutations) and two-loci (compen- 188

satory and BDMi mutations) simulation models to check for analytical and numerical 189

predictions and, second, multi-loci simulation models (underdominant, compensatory, 190

and BDMi mutations) to test for the possible effect of interactions between segregating 191

mutations. 192

Single-locus and two-loci simulations 193

We developed C++ programs to simulate populations of N hermaphroditic individuals 194

producing gametes with mutations from ancestral to derived alleles at a rate µ and, for the 195

two-loci simulations, recombinations between the two loci at a rate 0 ≤ r ≤ 0.5. Syngamy 196

may occur through self-fertilisation, at a rate 0 ≤ σ ≤ 1. Then, selection on offspring 197

occurs differently in the underdominant, compensatory, and BDMi mutations simulations 198

(as described above). Finally, genetic drift was included by sampling offspring from the 199

genotype frequencies using a multinomial distribution using the gsl ran multinomial 200

function from the GNU Scientific Library [42]. For each iteration, we measured the 201

number of generations required to fixate the derived allele (underdominant mutation), 202

a pair of derived alleles (compensatory mutations), and either derived allele (BDMi 203

mutations). 204

Importantly, selfing is known to increase the strength of background selection, which 205

further reduces effective population size [26,27, 43]. The strength of this effect critically 206

depends on genomic recombination rate. When the genomic recombination rate is 207

high, only highly selfing populations suffer from background selection. In contrast, 208

when the genomic recombination rate is low, the effect of background selection rise 209

linearly with selfing [26, 27]. To account for this effect, we used a Dirichlet-multinomial 210

distribution in the genetic drift function (instead of a multinomial distribution) that 211

allowed us to tailor the effective size of the population to its selfing rate. For this we used 212

analytical approximations in Roze [27] to simulate two background selection scenarios 213
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corresponding to two levels of genomic recombination. The first scenario corresponds to 214

a low rate of genomic recombination and leads to a linear decrease in Ne with selfing rate 215

(hereafter ’linear BG effects’). The second scenario corresponds to a high rate of genomic 216

recombination and leads to an accelerating decrease in Ne with selfing rate (hereafter 217

’curved BG effects’). Specifically, using the BS1 function from the supplemental material 218

of Roze [27] (File S2), we modelled the background selection effects assuming that 219

deleterious alleles with selection and dominance coefficients of s = 0.05 and h = 0.2 220

occurred with a genomic mutation rate of U = 0.1 in a genome map length of either 221

R = 0.5 (’linear BG effects’) or R = 40 (’curved BG effects’). This informed us by how 222

much Ne was reduced due to background selection for different selfing rates. Then, we 223

used these background selection effects on Ne to compute the parameter vector α of the 224

Dirichlet-multinomial distribution given that: 225

Ne

N
=

1 + α

N + α
(8)

Multi-loci simulations 226

We used individual based forward simulations in which the individuals have diploid 227

genomes of length L elements representing loci on which mutations can occur at rate µ 228

and between which recombination can occur at rate r. As above, we modelled a single 229

population of N individuals reproducing through selfing at rate 0 ≤ σ ≤ 1 and on which 230

selection depends on the type of genetic incompatibility considered (see above). 231

232

The single-locus and two-loci simulation models were performed using C++ scripts, and 233

the multi-loci simulations models were performed on the software SLiM [44], both using 234

GNU parallel [45] (see Code availability). 235

Results 236

Underdominant mutations 237

When underdominant, a mutation arising in a population is first counter-selected and it 238

is well known that either genetic drift or selfing facilitates crossing the fitness valley [38]. 239

For completeness we first summarize previous results (Fig. S1 Appendix S1). When 240

selfing rate increases, heterozygous individuals become rarer in the population and so 241

does the selection against underdominant mutations, increasing the probability of fixation 242

and decreasing the time to fixation. When s > 0, a new underdominant mutation arising 243

in a population may be directly positively selected if selfing rate is high enough, that is 244

if: 245

σ > σlim =
2su

s+ 2su
(9)

Including the effects of background selection slightly shortens the time to fixation 246

of symmetrical underdominant mutations (s = 0), but substantially increases the time 247

to fixation of asymmetrical mutations (> 0) in highly selfing populations (Fig. S1 E). 248

This is because background selection reduces the effective population size, Ne, and 249

thereby the efficacy of selection. Such a low efficacy of selection virtually reduces both 250

the fitness valley in the heterozygotes, A1A2 and the fitness peak in the homozygotes, 251

A2A2. But, because background selection mostly impact highly selfing populations – 252

in which selection on heterozygotes is irrelevant – the effects of background selection 253

mostly manifests as a lower probability of fixation in highly selfing populations because 254

the effect of positive selection on the homozygotes is reduced. 255
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Fig 1. Underdominant mutations accumulate more rapidly in selfing
populations. Analytical predictions (lines) and outcomes of multi-loci simulations (symbols)
of the averaged number of generations required to fixate a symmetrical underdominant
mutation compared to an outcrossing population (σ = 0). 4Nsu follows a Gamma distribution
with a shape parameter β of 0.1 (green), 0.5 (blue), or 1 (red), and mean parameter γ of 10
(circles), 100 (triangles), or 1,000 (squares). L = 100, N = 1, 000, µ = 10−6, r = 0.01. The
analytical predictions are (1− σ)β . 1, 000 iterations.

Previous studies have only considered a single mutation with constant effect [38]. 256

Interesting properties can be obtained if we assume a distribution of deleterious effect. 257

Assuming that 4Nsu follows a Gamma distribution with mean γ and shape β, the 258

proportion of underdominant mutations that can fixate in partially selfing populations 259

compared to outcrossing populations is well approximated by: 260

(1− σ)−β (10)

which is independent of γ. Thus, because the time to fixation is mostly determined by 261

the waiting time that a mutation that will get fixed arises in a population, the relative 262

time to fixation in partially selfing compared to outcrossing populations is simply given 263

by: 264

(1− σ)β (11)

which our multi-loci simulation results confirm as long as γ is not too small (Fig. 1). It 265

shows that when β < 1 there is a non-linear accelerating effect of selfing on accumulation 266

of underdominant mutations and the lower β the stronger the effect. 267

Compensatory mutations 268

Compensatory mutations can also contribute to RI, and their fixation also requires 269

crossing a fitness valley. How selfing affects the fixation of such mutations depends first 270

on the strength of the deleterious effect relative to drift (Nesc of the order of 1 or lower) 271

(Fig. 2). When it is low, fixation occurs in two steps. First, a primary mutation goes 272

to fixation as a weakly deleterious mutation and, second, the compensatory mutation 273

restoring fitness goes to fixation as a weakly beneficial mutation. As the total time 274

mainly depends on the waiting time for mutations that will be fixed arise, it can be 275

approximated by: 276

Tweak ≈ 1

4Nsu

(
e4Nh̃csc − 1

2h̃c
+

1− e−4N(1−h̃c)sc

1− h̃c

)
(12)

where h̃c =
hc(1−F )+F

1+F , which corresponds to the effective dominance level (hc(1−F )+F ) 277

scaled by the increase in drift due to selfing (1 + F ). The factor 2 in the first step 278

corresponds to the two potential initial paths. 279
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How do compensatory mutations fixate?

What are the selection on, and
the stability of, the diagonal path?

two-steps fixation
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Fig 2. Fixation regime of compensatory mutations as a function of the
selfing rate (σ), the strength of deleterious effect (deleteriousness), the
recombination rate between the two loci (r), and the coefficient of
dominance in double heterozygotes (kc). Populations with high selfing rates always
take the corner path on the fitness landscape (i.e., the deepest point of the fitness valley
represented by genotypes that are homozygous for the ancestral allele at one locus, and
homozygous for the derived allele at the other locus), while populations with low selfing rates
can take the diagonal path (i.e., double heterozygous genotype). The diagonal path may
however be counter selected (when kc is relatively high) and unstable (when the recombination
rate is relatively high). Note that, for the sake of simplicity, all effects are here presented as
qualitative categories while they are in fact gradual.

Selfing may affect both steps but, depending on the coefficient of dominance (h), 280

fixation is either faster or slower in selfing populations than in outcrossing population 281

because highly selfing populations are less affected by the selection at the heterozygous 282

state (Fig. S2). For instance, recessive deleterious mutations (e.g., hc = 0), do not 283

experience fitness costs in heterozygotes, which facilitates the fixation of both the primary 284

deleterious and the secondary beneficial mutations in outcrossing populations [46]. In 285

contrast, dominant deleterious mutations (e.g., hc = 1), do experience fitness costs in 286

heterozygotes, which both hamper the fixation of the primary deleterious mutation 287

and hide the beneficial effects of the second one in outcrossing populations. Overall, 288

selfing speeds up the fixation of compensatory mutations if the mutation is dominant 289

(hc > 1/2), and slows it down if the mutation is recessive (hc < 1/2), and has no effects 290

when mutation is codominant (hc = 1/2 hence h̃c = 1/2, independent of F ) (Fig. S2). 291

In contrast, when the deleterious effect is too high (Nesc >> 1) to allow the fixation of 292

a singly mutation, then the two compensatory mutations must segregate together in the 293

population and fixate together. In this case, the key parameters are the recombination 294

rate between loci (r), and the coefficient of dominance in the double heterozygote 295

(kc) (Fig. 2). When r = 0 and kc = 0, we found that the fixation time of a pair of 296
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compensatory mutations (T0,0) may be approximated by (see Appendix S1): 297

T0,0 ≈ (hc(1− F ) + F )sc
2µ2

(13)

which shows that selfing always increases the fixation time (Fig. 3B and Fig. S3). 298

This is because evolution can follow the diagonal path of the fitness landscape (i.e., 299

through the double heterozygous genotype A1A2B1B2), and thus avoid the corner path 300

made of genotypes with low fitness value (i.e., A1A1B2B2 or A2A2B1B1), more easily 301

in outcrossing than in selfing populations (Fig. 2, Fig. 3, Fig. S4). In comparison to the 302

corner path, the diagonal path represents a lower fitness valley, which flattens out as k 303

approaches 0. Thus, when r and kc are both equal to 0, outcrossing populations fixate 304

compensatory mutations by forming the double mutated haplotype (A2B2), which is 305

stable because it is not broken down by recombination and can spread in the population 306

because it is less counter selected. 307

When kc > 0 and/or r > 0, the dynamics is very different. Either selection against 308

double heterozygotes or recombination that breaks down double-mutated haplotypes 309

considerably reduces the probability of crossing the fitness valley. When r is small, we 310

can show that: 311

Tr,k ≈ T0,0

√
πeRErf(

√
R)

2
√
R

(14)

where Erf is the error function and R = N(1− σ)(r + hks). The right-hand function 312

increases very rapidly with R. These approximations and our simulations show that 313

both recombination and selection against heterozygotes strongly impedes the fixation 314

of compensatory mutations, both effects being reduced by selfing (Fig. 3B and Fig. 315

S3). When kc > 0, the diagonal path represents a fitness valley that selects against the 316

double mutated haplotype (A2B2). And, when r > 0, the double mutated haplotype 317

(A2B2) may break, forming genotypes that are off the diagonal path and eliminating 318

the derived alleles (A2 and B2) (Fig. 2). In contrast, the fixation time in highly selfing 319

populations is less influenced by r and kc because their high level of homozygosity 320

(i) makes selfing populations not following the diagonal path of the fitness landscape, 321

and (ii) makes the double mutated haplotype (A2B2) more stable over time due to the 322

inefficient recombination in selfers [23]. 323

We further found that, regardless of the coefficient of dominance in the double 324

heterozygote (kc) and the recombination rate (r), background selection shortens fixation 325

time in highly selfing populations (Fig. S5). By increasing drift, background selection 326

reduces the efficacy of selection against the primary deleterious mutation, which may 327

thus segregate at higher frequency and be more likely to be associated with the secondary 328

compensatory mutation. Moreover, because of background selection, Nes can be small 329

enough under selfing for the fixation to occur in two steps (which is rapid see (13)) 330

whereas, for the same population size, Nes can be too high under outcrossing so that 331

fixation can occur in a single step (which is much longer (14)). 332

The outcome of our two-loci simulations concur with the multi-loci simulations. 333

Specifically, our multi-loci simulations indicate that the fixation of two compensatory 334

mutations depends on the coefficient of dominance in the double heterozygote (kc), and 335

the recombination rate (r). Selfing speeds up the fixation of compensatory mutations, 336

except when the fitness of the double heterozygote is neutral (kc=0) and the recombina- 337

tion rate is low enough (r < 0.0001) for the haplotype carrying both derived alleles to 338

be stable (Fig. S6). 339

BDMi mutations 340

Contrary to our models of underdominant and compensatory mutations, the BDMi 341

model does not require crossing a fitness valley for RI to accumulate. Therefore, there is 342
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Fig 3. The effect of selfing on the fixation of compensatory mutations depends on the coefficient of dominance
in the double heterozygote (kc), and the recombination rate(r). (A) Schematic representations of the fitness landscapes
for compensatory mutations with kc = 0 (left) or kc = 1 (right). A1 and B1 are the ancestral alleles. A2 and B2 are the derived alleles.
(B) Time to fixation of a pair compensatory mutations with kc = 0 (left) or kc = 1 (right). The lines correspond to the analytical
approximations (eq. 14) for r = 0 (black), r = 0.001 (dark grey), r = 0.01 (grey) and r = 0.1 (light grey). Dots show the corrected mean
times to fixation of a pair of compensatory mutations from our two-loci simulations. We corrected the raw means because the threshold
made our data right censored (i.e., missing estimates above 109 generations), which we accounted for by first estimating the full
distribution by fitting gamma distributions on our simulation outputs using the fitdistriplus R package [47], from which we estimated
the corrected mean times to fixation. The dashed horizontal lines indicate the generation threshold after which simulations stop.
N = 1, 000, µ = 10−5, hc = 0.5, sc = 0.01. 1, 000 iterations. (C) Population fitness (black dots – right y axis) and the frequencies of
the 10 possible genotypes on the two loci fitness landscapes (solid lines – left y axis) over the last 4200 generations preceding the
fixation of the pair of compensatory mutations. The line colours match the genotype colours on the fitness landscapes. N = 1, 000,
µ = 10−5, hc = 0.5, sc = 0.01. 100 iterations. See Fig. S3 and Fig. S4 for the visualisation of additional parameter combinations.
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no obvious reason for selfing to accelerate RI. We first consider mutations that behave 343

neutrally in isolation (s = 0). If mutation rate is low compared to drift (4Neµ < 1), the 344

two incompatible alleles (A2 and B2) rarely segregate at the same time in the population 345

and one can consider that they fix independently. According to basic results of the 346

neutral theory, Equation 3 reduces to: 347

T =
1

2µ
+ 4Ne (15)

The 2µ term comes from the fact that mutation can occur at the two loci. In this case, 348

selfing only shortens the time a mutation needs to spread through the population and 349

get fixed (4Ne), but does not affect the waiting time (1/2µ). Because the former may be 350

negligible compared to the latter (as implicitly assumed in [37]), selfing barely impacts 351

the fixation time as confirmed by simulations (see below). 352

However, when the mutation rate is high (4Neµ > 1), the mean time a mutation 353

needs to get fixed is shorter than 4Ne because mutations of the same type may arise 354

on different individuals of the populations, so that multiple mutations can get fixed 355

simultaneously. Taking this effect into account, Kimura [48] showed that, at a single 356

locus, the mean time to fixation under continuous mutation pressure was: 357

TKimura =
4Ne

4Neµ− 1
× (γ + ψ(4Neµ)) (16)

where γ is Euler’s constant and ψ is the digamma function. Note that (16) converge 358

to (15) for small Neµ. Because our BDMi models have two mutation types (for the A 359

and B loci), we cannot use equation (16) as such because mutations of different types 360

cannot get fixed simultaneously in the populations. As a heuristic argument, we can 361

decompose TKimura = Twait + Tfix as in equation (3), where Twait = 1/µ. Thus, by 362

using Tfix = TKimura − 1/µ instead of 4Ne in (15), a more accurate expression under 363

high mutation rate is: 364

T = TKimura −
1

2µ
(17)

However, mutations can segregate at the two loci at the same time and be jointly 365

selected against, which is not taken into account in (17). Equation 17 thus serves as 366

a neutral reference to assess whether incompatibilities between mutations segregating 367

within populations affect the fixation time of BDMi mutations, and whether it does so 368

independently of the population selfing rate. Simulations showed that several BDMi 369

mutations could often segregate together in the population (Fig. S8), and cause incom- 370

patibilities within populations (Fig. 5A, Fig. S7). Accordingly, simulations showed 371

that high mutation rate and/or high effective size slowed down the fixation of BDMi 372

mutations (Fig. 4). Counter selection of such segregating incompatibilities hamper the 373

fixation of either derived alleles, and stronger (high sB; Fig. 6A) or more dominant 374

incompatibilities (hB > 0.5; Fig. 6B) increase fixation time. Finally, recombination 375

helps forming incompatible A2B2 haplotypes and also reduces the accumulation of BDMi 376

mutations (Fig. 4). Thus, selfing has opposing effects on these dynamics. On the one 377

hand, it increases selection by exposing the incompatible haplotype in homozygouste 378

state (especially when hB is low). On the other hand it increases drift and reduces 379

genetic shuffling, which reduce the occurrence of the incompatible haplotype. Overall 380

the second effects dominate and selfing globally reduces the time to fixation of BDMi 381

mutations. 382

When there is direct selection on mutations (s > 0), the effect of selfing on the 383

accumulation of BDMi mutations depends on the interaction between the mutation 384

rate (µ) and the coefficient of dominance (h) (Fig. 5B, Fig. S7). When the mutation 385

rate is low, BDMi mutations get fixed like beneficial mutations, whose probability of 386
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Fig 4. Fixation time of BDMi mutations (red) compared to neutral
mutations (blue) in outcrossing populations (σ = 0) (two-loci model). (A)
Higher population sizes (N) decelerate the fixation of BDMi mutations (sB = 2.5.10−2,
hB = 0.5; red) compared to neutral mutations (sB = 0; blue). r = 0.5, µ = 2.5.10−5.
1, 000 iterations. (B) Higher coefficients of dominance (hB) decelerate the fixation of BDMi
mutations (sB = 2.5.10−4; red) compared to neutral mutations (sB = 0; blue). N = 10, 000,
r = 0.5, µ = 2.5.10−5. 10, 000 iterations. (C) Higher rates of recombination (r) decelerate the
fixation of BDMi mutations (sB = 2.5.10−4, hB = 0.5; red) compared to neutral mutations
(sB = 0; blue). N = 10, 000, µ = 2.5.10−5. 100, 000 iterations. (D) Higher rates of mutation
(µ) accelerate the fixation of BDMi mutations (sB = 2.5.10−3, hB = 0.5; red) compared to
neutral mutations (sB = 0; blue). N = 10, 000, r = 0.5. 10, 000 iterations.
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fixation depends on selfing rate and the coefficient of dominance (h) [46]. When the 387

mutation is recessive (i.e., h < 0.5), the probability of fixation increases with selfing. 388

When the mutation is dominant (i.e., h < 0.5), the probability of fixation decreases 389

with selfing. And, when the mutation is codominant (i.e., h = 0.5), selfing does not 390

affect the probability of fixation [46]. Therefore, when mutation rate is low, selfing 391

speeds up fixation of recessive BDMi mutations, and slows down fixation of dominant 392

BDMi mutations and can be approximated by equation (13) in [46] (without standing 393

variation, Psv = 0, their notations) (Fig. 5B, Fig. S7). In contrast, when mutation rate 394

increases, selfing speeds up fixation of BDMi mutations regardless of the coefficient of 395

dominance (h). This is because it is more likely that multiple BDMi mutations segregate 396

in the population (Fig. S8) and cause genetic incompatibilities within populations, 397

hampering more the fixation of BDMi mutations in outcrossing population than in 398

selfing populations, as described above. 399

The fixation time of BDMi mutations is also affected by background selection, which 400

has two main effects: higher drift makes selection less efficient when selfing increases and 401

the occurrence of segregating mutations at both loci less likely. When there is no direct 402

selection (s = 0), BDMi are less counter selected within populations and accumulate 403

faster under selfing than under outcrossing. So, background selection reinforces the 404

effect of selfing. When there is direct selection (s > 0) selfing reduces both selection 405

on the beneficial allele and against the incompatible haplotype. When mutation rate 406

is low and selection against the incompatible haplotype limited even in outcrossing 407

populations, reducing selection on the beneficial allele predominate and selfing slows 408

down the accumulation of BDMi mutations (Fig. 7, Fig. S9). However, for higher 409

mutation rates, reduced selection against the incompatible haplotype predominates and 410

selfing speeds up fixation. Overall, under a wide range of conditions, even with direct 411
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Fig 7. Effects of background selection on the accumulation of BDMi
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with (right) selection on the derived alleles, and under different scenarios of background
selection, ’linear BG effects’ (yellow) or ’curved BG effects’ (red), which we compared to a
scenario without background selection (blue) (see methods for details on the implementation of
background selection effects in our simulations). N = 10, 000, h = 0.5, s = 2.5.10−4,
hB = kB = 0.5, sB = 10−3, r = 0.5. 10, 000 iterations.

selection, selfing facilitates RI. 412

In the previous analyses we considered that the direct selection on the A2 or B2 413

alleles is independent of selfing (s is a constant), as for adaptation to a new environment. 414

Selfing only modulated the efficacy of selection through its effect on Ne and homozygosity. 415

However, selfing can also directly affects selection, in particular in case of genetic or 416

sexual conflicts [49]. If such conflicts play an important role in RI, it has been proposed 417

that selfing may slow down speciation [9]. We did not explore an explicit model involving 418

conflicts, but to mimic such a situation we considered the simple case where selfing 419

directly reduced the selection coefficient: s = s0(1−σ). This is a strong effect as selection 420

vanishes under full selfing. We consider the case of high mutation rate with background 421

selection that corresponds to the best conditions under which selfing promotes speciation. 422

If ”conflict” selection is weak (s0 here), selfing still facilitates the accumulation of BDMi. 423

However, for stronger selection, despite negative interaction among segregating BDMi, 424

fixation of BDMi is faster under outcrossing than selfing (Fig. 8). 425

Discussion 426

The role of mating systems in speciation is an old question, in particular among plant 427

evolutionary biologists [1, 50, 51]. Depending on the underlying mechanisms, selfing 428

has been proposed to either promote or hamper speciation [8,9]. Surprisingly, despite 429

this long-standing interest, specific models on the role of selfing on RI are scarce and 430

mainly concerns the build-up of RI caused by underdominant mutations [38]. We filled 431

this gap by expanding previous theoretical work on underdominant mutations and by 432
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considering RI caused by epistatic mutations, such as compensatory mutations and 433

Bateson-Dobzhansky-Muller incompatibility mutations. Overall, we showed that selfing 434

promotes allopatric speciation for a wide range of parameters. In addition, our results 435

predicts that mating systems should affect the genomic architecture of reproductive 436

isolation. 437

Selfing helps crossing fitness valleys 438

The Bateson-Dobzhansky-Muller model was initially proposed as a possible solution 439

of the puzzling question of the evolution of hybrid incompatibilities as it does not 440

require crossing fitness valleys [52]. Alternatively, some mechanisms can help crossing 441

fitness valleys, and it is well known that selfing facilitates the fixation of underdominant 442

mutations [38]. We extended this model to a two-loci fitness landscape for which selfing 443

also helps crossing the valley under most conditions. Selfing has two main effects: first 444

it increases drift (in particular if background selection is strong); second, because of 445

reduced recombination and heterozygozity, it limits the breakdown of the new fittest 446

genotype, once it has been created. At the genome scale, assuming several loci where 447

underdominant fitness landscape may occur, we also showed that the effect of selfing 448

is stronger when there is a highly skewed distribution of the depth of the valleys to be 449

crossed (11). As similar conclusion is also likely for the compensatory mutation model 450

although we did not obtain an equivalent analytical result. 451

The role of interferences among mutations segregating within 452

populations 453

In the simplest form of the Bateson-Dobzhansky-Muller model of speciation, genetic 454

incompatibilities occur between derived alleles that are supposed to arise and become 455

fixed independently in different populations [7, 53], and the phase during which BDMi 456

mutations emerge, spread through the population and eventually get fixed is often 457

dismissed (e.g. [36]). This inevitable phase has recently been argued to have important 458

implications in speciation genetics [54]. Considering that BDMi alleles may segregate 459

in natural populations at polymorphic frequencies allows for instance to better explain 460

(i) why hybrid incompatibility may be variable between different pairs of individuals 461

originating from the same two populations (reviewed in [54]), and (ii) why genetic 462
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incompatibilities is widespread within species, as found in Drosophila melanogaster [55], 463

Caenorhabditis elegans [56], Arabidopsis thaliana [57], or in the genus Draba [18]. 464

To mimic genetic incompatibilities arising from mutations at multiple sites in the 465

genome, we used elevated mutation rates (4Neµ > 1) in the two-loci model, which allowed 466

us to dissect the dynamics of multiple incompatible alleles segregating within populations. 467

Under these conditions, we showed that epistatic interactions among segregating BDMi 468

delays their fixations, especially when they are unlinked and when they are not too 469

recessive. These results were validated by explicit multi-loci simulations. This effect was 470

not predicted by previous approximations that showed that, when mutations are rare 471

enough, RI only depended on mutation rate, independently on population parameters 472

and reproductive mode [37]. However, they are in agreement with some phenomenological 473

models that assumed that incompatibilities was function of the genetic distance between 474

individuals, so can be counter selected in large polymorphic populations [58]. 475

The purging of segregating BDMi mutations bears implications for the effect of 476

selfing on RI. First, selfing increases drift and reduces polymorphism (including for 477

BDMi mutations) and second, selfing reduces genetic shuffling thus limits the possibility 478

for two mutations arose in different individuals and genetic background to be gathered 479

in a same genotype. The combination of both effects facilitates RI compared to selfing, 480

even under certain conditions where outcrossing favours the fixation of locally selected 481

BDMi mutations. 482

Mating systems and the pace of speciation 483

It was previously unknown if and how selfing affects the pace of speciation. Our results 484

overall suggest that selfing reduces the fixation time of underdominant, compensatory, 485

and BDMi mutations in allopatry, making speciation overall faster in selfing populations. 486

Remarkably, this effect may even persist in the face of local adaptation, suggesting 487

that – contrarily to our initial hypothesis – ecological speciation may occur faster in 488

selfing populations than in outcrossing populations. It is unclear what are the relative 489

importance of underdominant, compensatory, and BDMi mutation in determining the 490

pace of speciation in natural populations. In any case, selfing broaden the spectrum 491

of incompatibilities that can fix, and so should on average shorten the waiting time to 492

complete speciation, even for ecological speciation. 493

However, the clear condition under which outcrossing should promote speciation is 494

when it is driven by genomic or sexual conflicts, which may completely vanish under 495

complete selfing. It is for instance known that sexual conflicts over maternal provisioning 496

during seed development are usually stronger in outcrossers than in selfers (e.g. [59]), so 497

that the sexually antagonistic co-evolution between male and female traits is expected 498

to go faster in outcrossing vs. selfing populations, and thus to promote speciation more 499

in outcrossing vs. selfing lineages [60]. A more explicit analysis remains to be done 500

but our basic model (where selection linearly decreases with the selfing rate) confirms 501

this prediction as soon as antagonistic selection is strong enough (say of the order of 502

Nes > 5). 503

So far, empirical results are still limited but tend to support these predictions, for 504

example with the accumulation of numerous incompatibilities between recently diverged 505

population of selfing arctic species [18, 19] or with macro-analyses suggesting higher 506

speciation rates in selfing lineages in Solanaceae [12,16] as mentioned in the introduction. 507

However, the underlying process of speciation remains unknown. In arctic species, 508

divergence in allopatry is likely, but in Solanaceae, selfing may have promoted speciation 509

through the limitation of gene flow, which we did not study here. 510
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Mating systems and the genetic architecture of reproductive 511

isolation 512

Beyond the effect of mating systems on the pace of speciation, our outcomes clearly 513

suggest that mating system should also affect the genetic architecture of speciation. 514

In particular, underdominant and compensatory mutations are expected to be found 515

relatively more often as reproductive barriers among selfers than among outcrossers. 516

Classical examples of genetic modifications leading to underdominant effects include 517

chromosomal rearrangement, which can generate and maintain RI between populations 518

or species [28, 61]. To our knowledge, there is no studies specifically comparing the 519

occurrence of underdominant chromosomal rearrangement in selfing vs. outcrossing 520

species. Reproductive isolation due to underdominant chromosomal rearrangement is 521

however more often found in plants than in animals [62], which is possibly due to a higher 522

frequency of selfing plant species. Our results also suggest that reproductive barriers 523

caused by a few strongly underdominant mutations are more likely to differ between 524

mating systems than reproductive barriers caused by many weakly underdominant 525

mutations. 526

Compensatory effects are often discussed in the context of the evolution of gene 527

expression for which stabilising selection may lead to the co-evolution of cis- and trans- 528

regulatory mutations (e.g., a cis-regulatory mutation increasing gene expression may 529

be compensated by a trans-regulatory mutation decreasing gene expression, or vice 530

versa) [63]. Although there compensatory mutations are expected to take a long time to 531

get fixed [29,40], co-evolution of cis- and trans-regulatory mutations have been found 532

to contribute to RI between (outcrossing) species of Drosophila [30] or mice [32], and 533

between (selfing) species of nematode [31]. 534

Finally, our models predict that in outcrossing species BDMi mutations are more 535

likely to fix when they are clustered (but in repulsion) than when they are widespread. 536

On the contrary, there is no specific constraint on genomic location in selfing species 537

such that pairs of incompatible alleles could arise everywhere in a genome. This 538

conclusion resembles the prediction that genes involved in local adaptation [64] or in 539

domestication [65] should be less clustered under selfing than under outcrossing. 540

Conclusions 541

Our analytical and simulation models show that selfing overall fosters the accumulation of 542

underdominant, compensatory, and BDMi mutations in allopatry. This outcome help us 543

predicting the speciation rates as well as the architecture of RI of selfing vs. outcrossing 544

species. Our results bring a theoretical background to long-standing ideas [1, 5] and are 545

tentatively supported by both phylogenetic studies and crossing experiments – though 546

additional empirical work is needed. Future theoretical work will need to account for 547

the effect of selfing on the stability of RI in the face of gene flow. 548
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satory mutations when the strength of the deleterious effect (sc) is
low (two loci model). Means of the two loci simulations for the number of gener-
ations needed to fixate the first (deleterious) mutation (empty dots), and the second
(compensatory) mutation (filled dots). The dot color stands for the coefficient of dom-
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heterozygotes (kc) is set to 0 (left) or 1 (right). Selfing rate (σ) ranges from 0 to 1,
with a 0.1 increment. N = 1, 000, µ = 10−7, sc = 0.0025, r = 0.5. 1, 000 iterations.
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two loci fitness landscapes (solid lines, left y axis). Selfing rate (σ) ranges from 0 (left) to 1 (right), with a 0.2 increment. The coefficient
of dominance of the double heterozygotes (kc) is set to 0 (A, B) or 1 (C, D), and the recombination rate between the two loci is set to 0
(A, C) or to 0.5 (B, D). N = 1, 000, µ = 10−5, hc = 0.5, sc = 0.01. 100 iterations.
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Fig S5. Effects of background selection on the accumulation of com-
pensatory mutations (two loci model). The graph displays the fixation time
estimated from the two loci models with a coefficient of dominance of the double het-
erozygotes (kc) set to 0 (left) or 1 (right), and under different scenarios of background
selection, ’linear BG effects’ (yellow) or ’curved BG effects’ (red), which we compared
to a scenario without background selection scenario (blue) (see methods for details on
the implementation of background selection effects in our simulations). N = 1, 000,
µ = 10−5, hc = 0.5, sc = 10−2, r = 0.5. 10, 000 iterations
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Fig S6. Effects of selfing on the accumulation of compensatory mu-
tations in multi loci models (multi loci model). The graph shows the two
loci analytical approximations (lines; eq. 14) and the outcomes of the multi loci sim-
ulations (dots) for the mean number of generation needed for the fixation of at least
two compensatory mutations. The threshold after which the simulation terminates is
set to 2.107 generations (dashed lines). The coefficient of dominance of the double
heterozygotes (kc) is set to 0 (left) or 1 (right), and the recombination rate between
each locus is set to 0 (blue), 0.0001 (green), 0.001 (yellow), or 0.01 (red). Selfing rate
(σ) ranges from 0 to 1, with a 0.25 increment. L = 100, N = 200, µ = 10−6, hc = 0.5,
sc = 0.04. 100 iterations.
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Fig S7. Effects of selfing and selection on the accumulation of BDMi
mutations (multi loci model). The panel displays the fixation time estimated
when the mutation rate, µ, is either 2.5.10−9 (top), 2.5.10−8 (middle), or 2.5.10−7

(bottom). The strength of selection on the derived alleles, s, is either 0 (left), or 2.10−3

(right). When there is selection, the dominance coefficient of the derived alleles, h,
is either recessive (0.1, red), codominant (0.5, yellow), or dominant (0.9, blue). The
solid lines in the neutral scenario correspond to analytical approximations: 1/2µ (light
grey), and equation (17) (dark grey) (see BDMi Results section for details on the
approximations). L = 1, 000, N = 1, 000, hB = kB = 0.5, sB = 10−2, r = 10−3.
1, 000 iterations.
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Fig S8. Effects of selfing and selection on the fixation time and the
number of segregating of BDMi mutations in a population (multi-loci
model). The panel displays (A) the time a mutation takes to fixate (fixation time)
and (B) the mean number of BDMi mutations segregating in a population sampled
every 100 generations. The mutation rate, µ, is either 2.5.10−9 (red), 2.5.10−8 (yellow),
or 2.5.10−7 (blue). The strength of selection on the derived alleles, s, is either 0 (left),
or 2.10−3 (right). L = 1, 000, N = 1, 000, h = 0.5, hB = kB = 0.5, sB = 10−2,
r = 10−3. 1, 000 iterations.

9



selfing rate (σ)

0 0.5 10.750.25

1.105

5.105

fi
xa

ti
o

n
 t

im
e 

(T
) 

(g
en

er
at

io
n

s)
μ=
2.5.10

-9
μ=
2.5.10

-8
μ=
2.5.10

-7

2.105

1.105

5.105

2.105

1.105

5.105

2.105

Fig S9. Effects of selfing, selection and background selection on the
time to fixation fixation of BDMi mutations in a population (multi-
loci model). The graph displays the mean fixation time of BDMi mutations when
the strength of selection on the derived alleles, s, is either equal to 0 (blue) or to 2.10−3

b(red). The mutation rate, µ, is either 2.5.10−9 (top), 2.5.10−8 (middle), or 2.5.10−7

(bottom). In addition to the BDMi mutations, deleterious mutations with a coefficient
of dominance of 0.1 and a strength of selection of −10−3 occured at a 5.10−3 rate.
The solid lines in the neutral scenario correspond to analytical approximations: 1/2µ
(light grey), and equation (17) (dark grey) (see BDMi Results section for details on
the approximations). L = 1, 000, N = 1, 000, h = 0.5, hB = kB = 0.5, sB = 10−2,
r = 10−3. 100 iterations.
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A1 Underdominance

A1.1 Model8

We consider a population of size N reproducing with partial selfing in proportion

σ. The effective size of the population is (Pollak 1987; Caballero and Hill 1992):10

Ne = N

1 + F
(A1)

where F is the Wright’s fixation index which neutral expectation is:

F = σ

2− σ (A2)

We consider a single bi-allelic locus, with the ancestral allele A1 that can mutate

in the derived allele A2 at rate µ. We note the fitness of genotypes A1A1, A1A2,

and A2A2, 1, 1− su, and 1 + s, respectively, and x the frequency of allele A2. The

change in allelic frequencies in one generation is given by:

∆x = x(1− x)
(
(1− F )(sx− su(1− 2x) + Fs

)
/W̄

≈ x(1− x)
(
(1− F )(sx− su(1− 2x) + Fs

)
(A3)

where W̄ is the mean fitness of the population. Under weak selection W̄ ≈ 1

(second line of A3) and F can be equated to its neutral expectation (A2). Equation
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(A3) can also be written as:

∆x = (1− F )Sx(1− x)(x− xeq) if F < 1

= sx(1− x) if F = 1 (A4)

where S = s + 2su, representing the total amount of selection (su between A1A112

and A1A2 and su + s between A1A2 and A2A2), and xeq is the internal (unstable)

equilibrium:14

xeq = (1− F )su − Fs
(1− F )(2su + s) (A5)

This internal equilibrium exist (0 ≤ xeq ≤ 1) if F ≤ s/(s + su). Above this

threshold, selection becomes directional and positive, and for F exactly equal to16

this threshold, equation (A3) becomes:

∆x = s

s+ su
(s+ 2su)x2(1− x) (A6)

which is equivalent to selection on a fully recessive allele with selective advantage18

s(s+ 2su)/(s+ su).

A1.2 Probability and time to fixation20

Noting Mδx = ∆x the expected infinitesimal change in allelic frequency and Vδx =
x(1−x)

2Ne is the infinitesimal variance we define the so-called Green function as:22

G(x) = e−
∫

2Mδx/Vδxdx (A7)
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The probability of fixation of a single A2 mutant is then given by (Kimura 1962):

Pfix =

∫ 1/2N

0
G(x)dx∫ 1

0
G(x)dx

(A8)

This solves to:24

Pfix =
erf
(
xeq
√

2NeS(1− F )
)
− erf

((
xeq − 1

2N

)√
2NeS(1− F )

)
erf
(
(1− xeq)

√
2NeS(1− F )

)
+ erf

(
xeq
√

2NeS(1− F )
) (A9)

where erf is the error function. Under recurrent mutations, fixation is certain and

we are interested in the time to ultimate fixation. It can be obtained using Kimura26

(1980). The infinitesimal mean change is now given by Mδx = ∆x+µ(1−x) where

the additional term corresponds to recurrent mutation. We then plug Mδx into the28

Green function (A7) and the time to ultimate fixation under recurrent mutation

is given by:30

Tfix =
∫ 1

0

∫ x

0
4Ne

G(z)
(1− z)zdz

1
G(x)dx (A10)

No close form solution exist for (A10) so numerical integration must be carried

out (see Mathematica notebook). However, we can obtain an approximation as32

follows (see also Glémin and Ronfort 2013). The time to ultimate fixation can be

decomposed into two parts: the waiting time for the appearance of the mutation34

destined to be fixed plus the time to fixation conditioned on the fact that fixation

will occur. Because of underdominance the waiting time is expected to be much36

longer than the conditioned fixation time, which can be neglected. The time to
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ultimate fixation can thus be approximated by:38

Tfix ≈
1

2NuPfix
(A11)

For most parameters, (A11) is very accurate.

A1.3 Thresholds for near-neutrality40

Assuming x << 1 in equation (A3) shows that a rare underdominant mutation

behaves almost like a deleterious allele with a deleterious heterozygote effect (1−42

F )Sxeq if xeq > 0. For xeq < 0 the mutation is positively selected for and can easily

fix, which corresponds to the threshold F ≥ su/(s+ su) (see above). Alternatively,44

for a given selfing rate, mutations with an heterozygote effects lower than the

following threshold can easily fix:46

slimu = s
F

1− F (A12)

This threshold vanishes to 0 when s = 0 and all mutants initially behave as

deleterious.48

When s = 0 we can consider a less stringent threshold as follows. When a

mutant arises, x << 0 so:50

∆x ≈ −(1− F )sux (A13)

This is equivalent to negative genic selection with an effective selection coefficient

se = (1−F )su. We can consider that the mutation behaves almost neutraly when52

2Nese ≤ 1, which can be expressed as: 2N(1 − σ)su ≤ 1. So the nearly neutral
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threshold is simply given by:54

snnu = 1
2N(1− σ) (A14)

A1.4 Distribution of deleterious effects

We now consider that the scaled heterozygote effects, 2Nsu are not fixed but follow56

a gamma distribution with mean γ = 2Nsu and shape β, with pdf given by:

φ(z) =

(
γ
β

)−β
zβ−1e−

βz
γ

Γ(β) (A15)

The proportion of symmetrical underdominant mutations (s = 0) that can fix

(with a reasonable chance), ρ, is thus given by:

p(σ) =
∫ 1/2N(1−σ)

0
φ(z)dz

= 1−
Γ
(
β, β

γ−γσ

)
Γ(β) (A16)

Assuming that β << γ and taking Taylor expansion of (A16) in β/ρ close to 0 we58

get:

p(σ) ≈

(
β

γ(1−σ)

)β
Γ(β + 1) (A17)

The ratio ρ(σ) = p(σ)/p(0) gives the relative excess of the proportion of mutants60

that can fix compared to an outcrossing population:

ρ(σ) =
Γ(β)− Γ

(
β, β

γ−γσ

)
Γ(β)− Γ

(
β, β

γ

) (A18)

5



Using the same approximation that β << γ we obtain the very simple formula:62

ρ(σ) ≈ (1− σ)−β (A19)

Numerical and simulations results show that these two expressions also very ac-

curately approximate the excess of probability of fixation (or reduction in fixation64

time) compared to an outcrossing population:
∫∞

0 Pfixφ(S)dS∫∞
0 Pfixφ(S)dS

∣∣∣
σ=0

(or the inverse for

fixation time).66

A2 Compensatory mutations

A2.1 Model68

We now consider a model of compensatory mutations at two loci with two alleles,

where two haplotypes are equally fit, A1B1 (haplotype 1) and A2B2 (haplotype 4),

but the intermediate paths, A1B2 (haplotype 2) and A2B1 (haplotype 3) are de-

leterious. Alike in the single underdominant model described above, the evolution

of pairs of compensatory mutations requires to cross a fitness valley. For simplicity

we consider a symmetrical model and we set the fitness of the genotypes as follows:

w11 = w44 = 1

w22 = w33 = 1− s

w12 = w13 = w24 = w34 = 1− hs

w14 = w23 = 1− hks (A20)
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where the subscript ij denotes the genotype formed with haplotypes i and j, and

s ≥ 0 and 0 ≤ h ≤ 1 are respectively the strength and the coefficient of dominance70

of the deleterious effects of each mutation, and k is the coefficient of dominance

for the double heterozygote genotype A1A2B1B2. In the main text we added the72

subscript c to these coefficient to distinguish with the coefficients in the BDMi

model. Here we remove them to ease the reading.74

We build upon previous haploid models (Kimura 1985; Stephan 1996) and

extend it to diploidy with partial selfing. Previous works have shown that little re-

combination strongly prevent the fixation of compensatory mutations by breaking

down double mutants. Under the assumption of weak recombination, we can only

follows the four haplotypes and assume that genotype frequencies are obtained

using multi-allelic single locus theory. We note Xi the frequency of haplotype i,

and Gij the frequency of genotype ij. This makes the system more tractable than

the general system of ten equations presented in the main text. After meiosis,

haplotype frequencies are given by:

Xi = Gii + 1
2

∑
j 6=i

Gij + rδi(G23 −G14)
 (A21)

where δi = 1 for i = 1, 4 and δi = −1 for i = 2, 3. We consider unidirectionnal
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mutation from A1 to A2 and B1 to B2 at the same rate, u, so after mutation:

Xu
1 = X1(1− 2u) (A22a)

Xu
2 = X2(1− u) +X1u (A22b)

Xu
3 = X3(1− u) +X1u (A22c)

Xu
4 = X4 + (X2 +X3)u (A22d)

After syngamy, we assume that genotype frequencies directly equilibrate to:

Gr
ii = (Xu

i )2(1− F ) + FXu
i (A23a)

Gr
ij = 2Xu

i X
u
j (1− F ) for i 6= j (A23b)

And finally, after selection:

G′ij = wijG
r
ij/W (A24)

where W is the mean fitness of the population. To simplify the system further,

we can consider that intermediate haplotypes (A1B2 and A2B1) are maintained in

approximate equilibrium at low frequency. This is true if s >> u and s >> r. We

also assume weak selection s << 1. Given the symmetry of the model X2 = X3

and are noted χ and we note X4 = x, the frequency of the compensated haplotype,

for which we want to calculate the probability and time to fixation. We can write:

∆χ(χ, x) = ∆X2 = ∆X3

∆x(χ, x) = ∆X4

with the change of variables proposed above. We can use a separation of time76
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scale argument and consider that χ equilibrates much more rapidly than x.Thus

we first solve ∆χ(χ, x) = 0 for a given x and then plug the equilibrium χ value78

into ∆x(χ, x). We thus obtain a an equation with a single variable that can be

treated with classical diffusion theory. The full equation is not analytically tract-80

able, however, noting that χ must be small, we can perform a Taylor expansion of

∆χ(χ, x) in χ at the first order and solve the resulting linear equation in χ. With82

the help of Mathematica we obtained:

χeq(x) = (1− x)(u+ x(1− F )(r − (h+ F − hF )rs− hksu))
s(h(1− 2kx(1− x)) + F (1− h+ 2hkx(1− x))) (A25)

For h = 0 and F = 0 the first order term in χ vanishes so we need expansion at84

the second order, which gives:

χeq(x) =
√

(1− x)(rx+ u)
s

(A26)

Then we plug either (A25) or (A26) into ∆x(χ, x). The full expression is rather86

cumbersome but it can be approximated as follows. As we assumed that all para-

meters are small: u, s, r = O(ε) with ε << 1, we can only kept first order terms,88

which correspond to terms in s, r, u and u2/s. With the help of Mathematica we

obtained for h > 0 or F > 0 :90

∆x = 2 u2

(F + (1− F )h)s(1− x)C1︸ ︷︷ ︸
Mutational input

+x(1− x) (2uC2 − (1− F )(khs(1− 2x) + rC3))︸ ︷︷ ︸
selection-like dynamics

(A27)

9



where C1, C2 and C3 are expressions independent of s, r and u:

C1 = 1
(1− 2kx(1− x)))

C2 = 1− (1− F )hk(1− 2x2)
F + (1− F )h(1− 2kx(1− x))

C3 = 1− 2x(1− F )(F + (1− F )h(1 + k(1− 2x)))
F + (1− F )h(1− 2kx(1− x))

The first term in equation (A27) corresponds to the input of the second mutation

on the deleterious haplotypes, either A1B2 or A2B1 (hence the factor 2), which92

are both at mutation-selection balance equilibrium, u
(F+(1−F )h)s . The second term

corresponds to selection-like dynamics of the form Sx(1−x) where S has a complex94

form here. First, as the mean fitness of the population is of the order of 1 − 2u

(see classical load theory, ex Charlesworth and Charlesworth (2010)), the fitness96

of the double mutant is simply of the order of 2u (but also depends on k and F).

The second term corresponds to selection against double heterozygotes (1−F )khs98

and breakdown of the double mutant by recombination r(1 − F ). When r = 0

and k = 0, the double mutant A2B2 simply behaves as a beneficial mutations.100

On the contrary, the double mutant behaves as a deleterious mutations when

recombination or selection overwhelm mutation:102

(1− F )(khs+ rC3) > 2uC2 (A28)

So just a little recombination or selection against double heterozygotes greatly

reduce the probability of fixation of the double mutant. From (A28) it is also clear104

that selfing increases the conditions of fixation of the double mutant.
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A2.2 Probability and time to fixation106

Equation (A27) can be injected in a classical one dimensional diffusion equation

and numerically solved to obtain the time to fixation as in Kimura (1980). There108

is no analytical solution to the full equation but we can obtained a rather simple

analytical approximation as follows. As in the main text, the time until ultimate110

fixation can be decomposed into the waiting time of the mutation destined to

fixate and the time to fixation, conditional to fixation. The first term is usually112

much larger than the first one so we can only consider the waiting time and we

can apply diffusion theory using (A7) and (A8) and modified version of (A11):114

Tfix ≈
1

4NuχeqPfix
(A29)

because we only consider mutation arising on deleterious haplotypes, whose num-

ber is 2Nχeq in the population.116

When r = 0 and k = 0, C1 = C2 = 1 and the selection-like term reduces to 2u.

So we have:118

T0,0 ≈
(F + h− hF )s

2u2
1− e−8Nu/(1+F )

8Nu/(1 + F ) (A30)

which reduces to:

T ∗0,0 ≈
(F + h− hF )s

2u2 (A31)

when 4Nu < 1 as given in the main text.120

When k = 0 but r > 0, we still have C1 = C2 = 1 and C3 = 1 − 2x if

r > u we can neglect the mutation term so we obtain a simple selection like term:122
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r(1− F )x(1− x)(1− 2x). This leads to the following solution:

Tr,0 ≈
(F + h− hF )s

2u2
1

N
(

1− Erf((1−1/N)
√
R)

Erf(√R)

) (A32)

with R = N(1 − σ)r. Similarly, when r = 0 and k > 0 the selection-like term

takes the same form, hks(1−F )x(1−x)(1−2x) hence the same result as equation

(A32) with R = N(1 − σ)hks. This illustrates that recombination and selection

against double heterozygotes play the same role. The general equation is more

difficult to solve but as recombination and selection have the same form, so a

heuristic argument is to use equation (A32) with R = N(1− σ)(r+ hks). Finally,

to simplify the expression we can take the limit o (A32) when N → ∞ (but

R→ cte), which leads to:

Tr,k ≈
(F + h− hF )s

2u2

√
πeRErf(

√
R)

2
√
R

with R = N(1− σ)(r + hks) (A33)

as given in the main text. Simulations show that this general approximation is124

rather accurate and allows a clear interpretation of the effect of recombination,

selection against heterozygotes and selfing. It is important to note that these res-126

ults are valid when effective recombination is low (r(1 − F )). In the main text,

simulations show that they quantitatively breakdown when recombination is too128

high. However these approximations are useful to characterize the effect of selfing

on the fixation of compensatory mutations.130
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