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In the following sections, we present our approach to calculating Lyapunov exponents.  

We derive our central result 
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directly from the growth equation 

 ( )( ) ( )tt A t=x� E x  (2) 

We then use perturbation theory to show how the lag times (expressed in terms of 

eigenvector projections) can be calculated to arbitrary precision in terms of the switching 

rates ijH .  We give a more general formulation than in the main text, allowing the 

number of environments (n) to be different from the number of phenotypes (m).  We use 

notation introduced in Figure 1, main text. 

 

1.  Lyapunov Exponents for Structured Population Growth 

In order for our general approximation to be valid, we require the top eigenvalue of the 

matrices Ai to be real, and for there to be a gap in the eigenvalue spectrum between the 

two eigenvalues of largest magnitude.  Furthermore, we will restrict our discussion to 

cases when the top eigenvector is non-negative.  In the case of responsive switching, 

these conditions hold, as seen in section 3.  In the case of spontaneous stochastic 

switching, these conditions are guaranteed by the Perron-Frobenius theorem.  We apply 

the theorem to the nonnegative matrix iA Iγ+ , where I is the identity matrix and γ is a 

large positive constant.  The eigenvectors of this matrix are identical to those of Ai.  As 
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long as each phenotype can give rise to any other phenotype, via some sequence of 

switchings, the matrix iA Iγ+  is primitive, and the theorem may be applied.  Primitivity 

holds trivially if all switching rates are strictly positive. 

 We subdivide time into consecutive intervals in which the environment variable 

E(t) does not change.  The duration of the l-th such interval is denoted Tl, and the total 

time elapsed by the end of the L-th interval is denoted 
1

L

L
l

t
=

= lT∑ , where t0 = 0.  The state 

of the environment during interval l is denoted ε(l). 

 We introduce the generalized eigenvectors  which bring the matrix Ak
rv k to its 

Jordan-block form.  That is, if we define the matrix 1
k

k mM k⎡ ⎤= ⎣ ⎦v " v , then the 

matrix 1
k k kM A M−  is in Jordan-block diagonal form (1).  The eigenvalue associated with 

the r-th eigenvector is denoted ( )r kAλ , and these are decreasing with increasing r, and 

appear with multiplicity (the top eigenvalue is non-degenerate). 

 If durations Tl are sufficiently long (we will explain what this means shortly), the 

direction of the population vector at the end of the (l-1)-th interval is very close to that of 

the top eigenvector of environment ε(l-1).  Thus ( 1)
1 1 1( ) ( ) l

l lt N t ε −
− −≈x v , where we choose 

the top eigenvectors normalized so their entries sum to one: 1
1
( ) 1

m
k

s
s=

=∑ v  for all k (this is 

always possible due to the positivity of the top eigenvectors).  When the environment 

changes, we may then simply project this top eigenvector onto the new eigenbasis to 

describe the dynamics in the new environment.  Projecting onto the eigenbasis of 

environment ε(l), the component along the new top eigenvector  is given by 

1( )lt −x

( )
1

lεv
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( ) ( 1) 1(l l lq N tε ε − − ) , where  and 1
1 1ij i jq M M−≡ ⋅e e 1 (1,0 ,0)=e … .  Note that  is 

independent of the magnitudes of all eigenvectors other than the top eigenvectors, and 

thus our prescribed normalization of  uniquely determines . 

ijq

1
kv ijq

 The time evolution of  for ( )N t 1lt t− lt≤ <  is then given by 

 ( 1 ( ) 1( )( )
( ) ( 1) 1 1( ) ( ) ( )l lA t t
l l l lN t q e G t t N tελ

ε ε
−− )− −= + − −  (3) 

 
where  is a function that grows slower than , and ( )G T 1 ( )( )lA Te ελ

( ) ( 1)(0) 1 l lG qε ε −= − .  The 

exact form of  depends on the lower eigenvalues of( )G T ( )lAε  and their multiplicities, and 

on the projection of  onto their corresponding eigenvectors.  The Lyapunov 

exponent is then given by the following limit: 
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where lim L
L

t
L

τ
→∞

= (the average duration of environments). 

  
 The approximation in (4) is valid when .  This can be 

achieved if T

1 ( )( )
( ) ( 1) ( )l lA T
l l lq e Gελ

ε ε − � T

l are sufficiently long.  We have an explicit bound on  when the other 

eigenvalues are non-degenerate: 

( )G T

2 ( )( )
( ) ( 1)( ) lA T
l lG T mK e ελ

ε ε −≤ , where 

1
11 1

max ( ) ( )
m

j i
ij r i r sr s

K M −

≠ =

= ⋅ ∑e v v  and  are the standard Euclidean basis vectors.  Thus the 

following condition is sufficient: 

re
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If we define min ,
1 2

1max log
( ) ( )

ij

i j
i i ij

mK
T

A A qλ λ

⎧ ⎫⎛ ⎞⎪= ⎜⎨ ⎜−⎪ ⎪⎝ ⎠⎩ ⎭

⎪
⎟⎬⎟ , then our approximation is valid for 

environmental durations .  The true Lyapunov exponent approaches the 

approximation exponentially fast in , for , due to the exponential decay of the 

correction term neglected in 

minlT T�

lT minlT T>

(4), so the approximation is a very good one in this regime. 

 
 We can further simplify equation (4) if we assume that environmental changes 

follow the Markov chain bij.  We denote the duration of the k-th occurrence of 

environment i using the random variable (this is just a regrouping of the random 

variables T

( )i
kT

l).  For fixed i, we assume that the variables  are independent, identically-

distributed variables, with mean

( )i
kT

iτ .  If L is the number of intervals elapsed, then for large 

L, the number of occurences of environment i approaches pi L, and of the environment 

pair j followed by i approaches pjbijL, so the Lyapunov exponent is 
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 (6) 

 This is our central result allowing computation of Lyapunov exponents for 

structured population growth.  It can be interpreted in terms of delay times as follows.  

The quantity qij is the projection of the population vector at the end of environment j onto 

the top eigenvector of the new environment i (the projection operation uses the new 

eigenbasis, via the matrix 1
iM − ).  If the population size is N, then N qij is the size of the 
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subpopulation initially growing at the rate 1( )iAλ when the environment changes.  

Defining the delay time  as the amount of time it takes this subpopulation to reach a 

size of N, we find , and substituting this into the above equation, 

we obtain equation 

ijT ∗

1(log ) / ( )ij ij iT q λ∗ = − A

(1).  Rewriting condition (5) using this definition, we find 

( *
1

1 2

1 log( ) ( )
( ) ( ) ij ij i

i i

T mK
A A

λ
λ λ

+
−

� )T A , where T is the environmental duration. 

 Computation of Lyapunov exponents is now reduced to computation of  

and 

log ijq

1( )iAλ , which is done for spontaneous and responsive switching in the next two 

sections.  It is sometimes easier to directly compute the delay times ijT ∗ , and this gives 

identical results, as shown in section 4.  

 

2.  Lyapunov Exponent for Stochastic Switching 

 
Assuming that the stochastic switching rates are small compared to the growth rates, we 

can use perturbation theory to write the eigenvalues and eigenvectors of  to first order 

in , and use these expressions in equation 

kA

( )k
ijH (6) to compute the long-term growth rate.  

The formulae for the eigenvectors, , and eigenvalues, k
rv ( )r kAλ , of the matrix  are as 

follows (2): , and 

kA

( )k k
r r iri r

C
≠

= + ∑v e ei
k( ) ( )( ) k

r k r rrA f Hλ = − , where ( ) ( ) ( )k k
ij j i

kf fΔ ≡ − , 

, for i , and ( ) ( ) ( )/k k
ij ij ijC H= Δ k j≠ ( ) 0k

iiC =  for all i.  We will use  to refer to the matrix 

with entries . 

( )kC

( )k
ijC
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 Returning to the definition of , and using ijq iα  to denote the fastest-growing 

phenotype in environment i, we can write 1
iij i jq M M

jα α
−= ⋅e e .  This expression gives the 

correct value for  when the order of the eigenvectors appearing in the matrices ijq iM  and 

jM  is arbitrary.  We expand 1
i jM M−  to first order in the switching rates: 

 ( ) ( ) ( ) ( )11 ( ) ( ) ( ) ( ) ( )i j i j j
i j

( )iM M I C I C I C I C I C C
−− = + ⋅ + ≈ − ⋅ + ≈ + −  

 
where I is the identity matrix.  It follows that ( ) ( )

i j i j i j

j i
ijq C Cα α α α αδ= + − α j.  If iα α= , we 

have  to first order, and if log( ) 0ijq = i jα α≠ , ( )( ) ( )log( ) log
i j i j

j i
ijq C Cα α α α≈ − .  Using these 

expressions in equation (7) gives the Lyapunov exponent to first order: 

 ( ) 

( ) ( )
( ) ( )

( ) ( )
, :

log i j i j

i i i

i j i j j i

j i
i i

S i i j ij j i
i i j

H H
p f H p b α α α α

α α α
α α α α α α

τ τ
≠

⎛ ⎞
⎜ ⎟Λ = − + +
⎜ ⎟Δ Δ⎝ ⎠

∑ ∑  

In the case that , and ( )k
ij ijH H= i iα = , we recover the expression given in the main text. 

 If the perturbation expansion were carried out to second order, terms linear in H 

would appear in the second sum above, with coefficients that are independent of iτ .  

Since the linear terms in the first sum are proportional to iτ , for large iτ  we are safe in 

ignoring any linear contribution coming from the second sum.  Using higher order 

perturbation theory for the eigenvalues and eigenvectors, the Lyapunov exponent can be 

calculated as a series expansion in ijH , if desired.  Notice that the use of iα  above allows 

one to examine the general case in which the number of phenotypes and environments are 

not necessarily equal.  We note that the case of n environments and m phenotypes, with 

n > m, can be mapped, by appropriate choice of parameters, to a problem of m 
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phenotypes in m environments, with the Lyapunov exponent taking the same general 

form as the expression given in the main text. 

 

3.  Lyapunov Exponent for Responsive Switching 

In the case of responsive switching, the matrices Ak take the following form: 

( )
1
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2
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The matrix of eigenvectors of Ak and its inverse are as follows, where ( )
( )

k

k m
j k

m j

Hr
H α

= −
+ Δ

: 

1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1
1 1

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0

1 1    

0 0 1 0 0 0 1
0 0 0 1 0 0 0

k k k k

k k k k k k k
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⎟
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⎟
⎠

Since the leading eigenvector in environment k is 
k

eα
K , we find ( )

( )j

j i

i m
ij i

m

Hq r
Hα

α α

= − =
+ Δ

. 

Using equation (6), the Lyapunov exponent is given by 

 
( ) ( )

R
1 , 1

log(1 / )
i j

n n
i i

i i j ij m
i i j

i
p f p b Hα ατ τ

= =

Λ = − + Δ∑ ∑ α  

Taking i iα = and replacing ( )i
if  by ( )i

if c− , we obtain the expression given in the main 

text. 
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4.  Method of Delay-Times for Computing Lyapunov Exponents 

The results of the previous two sections can also be derived by calculating the delay 

times  introduced in section 1, and using the relation  in equation ijT ∗
1log ( )ij i ijq Aλ ∗= − T

j

(6) to compute the Lyapunov exponent.  As explained previously, the delay time  is 

the amount of time it takes, upon a change of environment from j to i, for the 

subpopulation growing at the fastest rate in environment i to reach a population size equal 

to the total population size that was reached at the end of the environment j.  These times 

can therefore be computed directly by solution of differential equations, as follows. 

ijT ∗

 We will make repeated use of the following pair of equations 

j j j

i i i

x x

x x x

γ

γ δ

=

= +

�
�

 

whose solution is ( )( ) (0) (0) (0) ji

i j j i

TT
i i j jx T x x e x eγγδ δ

γ γ γ γ− −= + + . 

 For responsive switching, assume the population has reached a size N at the end 

of environment j.  The population is almost entirely composed of phenotype j.  When the 

environment changes to i, phenotypes j switch to phenotype i at a rate Hm.   is the time 

it takes for phenotype i to reach a size of N.  In the above equations, this corresponds to 

*
ijT

( )i
j j mf c Hγ = − − , ( )i

i if cγ = − , and mHδ = , and  is found by solving *
ijT *( )i ijx T N= .  

For large Hm, i jγ γ� , we can simply solve 
( ) *

( ) ( )

( )i
i ijm

i i
i j m

f c TH
f f H

Ne N−

− +
= , finding 

.  Note that this expression holds for small H* ( ) 1( ) log(1 /i
ij i ji mT f c H−= − + Δ )R

m as well, 

since small Hm implies  is large, so we are again justified in ignoring term *
ijT jTeγ .  Since 
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the best phenotype in environment i does not switch to any other phenotype, 

( )
1( ) i

i iA f cλ = − . 

 For stochastic switching with small switching rates, the fastest phenotype in 

environment j has reached a population size N≈ , and there is a small amount of 

phenotype i due to switching at rate Hij from phenotype j.  This amount is found by 

taking ( )j
j j jjf Hγ = − ( )j

i i ii, f Hγ = − , and ijHδ =  in the above equations, and assuming 

that T is long enough and switching rates H are small, 
( )

( ) ( )( ) (0)
j

ij j
j j

j i

H f T
i jf f

x T x e
−

= .  Since 

( )

(0)
j

jf T
jx e ≈ N , we find the amount of phenotype i is equal to ( ) ( )/( )j j

ij j iH N f f− .  When 

the environment switches to i,  is approximately the time it takes phenotype i to reach 

size N.  This is found by solving 

*
ijT

*( )i ijx T N=  with ( )i
j j jjf Hγ = − ( )i

i i, iif Hγ = − ij, Hδ = , 

(0)jx N≈ , and ( ) ( )(0) /( )j j
i ij j ix H N f f≈ − , giving 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )
* 1 1log log /ij ij

i j j i i i
i j i i j i

H H S
ij ij ijf f f f f f

T
− −

= − + = Δ H  to lowest order in Hij .  Since Hij is small, 

 can be written as in the responsive case: *
ijT ( )( )

* 1 log 1 /i
i

S
ij ij ijf

T ≈ + Δ H

ii

.  The top eigenvalue 

to first order in switching rates is ( )
1( ) i

i iA f Hλ = − . 

 

5.  Lyapunov Exponents and Environmental Fluctuations 
 
The Lyapunov exponent determines the long-term growth rate of a population 

characterized by growth/switching matrices Ak when presented with a changing 

environment given by the process E(t).  Remarkably, equation (1) shows that, provided 

the environments remain constant for long enough periods, the long-term growth rate will 
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depend only on the mean durations of the environments, iτ , and on the pairwise 

correlations between them,  and will not depend on other characteristics of the 

environmental fluctuations. 

ijb

 To see this directly, we undertook the following numerical exercise.  We 

considered two environments and two phenotypes, described by a pair of 2-by-2 matrices, 

A1 and A2.  In this case,  is trivial, as environment 1 always follows environment 2, and 

vice versa.  The only non-trivial environmental fluctuation is due to the process 

generating the durations of each environment.  For simplicity, we kept the duration of 

environment 2 constant, that is, if is the duration of the k-th occurrence of 

environment i, we took 

ijb

( )i
kT

(2)
2kT τ=  for all k.  The random variables  thus have the delta 

function probability distribution, centered at the value 

(2)
kT

2τ . 

 For the duration of environment 1 we examined three different distributions: 

uniform, exponential, and delta function.  For each distribution, we generated many 

realizations of the environment, and calculated the Lyapunov exponent numerically.  In 

Figure S1A, we plot the Lyapunov exponent as a function of 1τ .  The exponent depends 

strongly on the distribution that determines the environmental fluctuations.  According to 

equations (1) and (5) we expect the exponent to become independent of the exact 

distribution if  is always larger than some cutoff value.  Taking this cutoff to be 10, 

and using the same three distributions, we find in Figure S1B that this is indeed the case: 

the Lyapunov exponents calculated using different distributions for  are identical, and 

depend only on the mean duration, 

(1)
kT

(1)
kT

1τ . 
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 This conclusion holds only if the environmental durations  are all sufficiently 

large, more precisely, if  for all k and i.  In this case, equation 

( )i
kT

( )
min

i
kT T� (1) also gives a 

way to calculate the exponent.  The result of this exact calculation is given by the solid 

line in Figure S1B, showing that equation (1) is in excellent agreement with the 

numerical results. 

 
 
6.  Lyapunov Exponents for Finite Populations 

So far we have allowed the population size to grow without bound.  Suppose instead that 

a maximum population size, N, is imposed, for example by periodic resampling.  The 

Lyapunov exponent, as defined by 1lim log ( )tt
N t

→∞
Λ ≡ , would be zero, because the total 

population size asymptotically would not grow.  If two different strains of organism were 

competing within a fixed population size, however, one would eventually go extinct.  A 

more general definition of the long-term growth rate must therefore exist, which we now 

describe. 

 From the original population growth given in (2), we see that the total population 

size, N(t), obeys the equation ( )( ) ( ) ( ) ( ) ( ) ( )i i i ii i
N t f t x t f t n t N t= =∑ ∑� , where ( )if t  and 

 are the growth rate and frequency of phenotype i at time t.  Solution of 

this equation yields 

( ) ( ) / ( )i in t x t N t≡

0

( ) (0)exp ( ) ( )
t

i ii
N t N f t n t dt

⎛ ⎞
′ ′ ′= ⎜

⎝ ⎠
∑∫ ⎟ , suggesting the following 

definition of the long-term growth rate: 

 1

0

lim ( ) ( )
t

i itt i
f t n t dt

→∞
′ ′Λ ≡ ∑∫ ′  (8) 
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 This definition has the advantage of depending only on the frequencies of 

phenotypes, so it is meaningful even when population size is fixed.  For unlimited 

growth, 1lim log ( )tt
N t

→∞
Λ = , so it agrees with the previous definition.  Calculation of Λ for 

finite-size populations using stochastic simulations was performed and was in excellent 

agreement with the calculated value given by equation (1), for population sizes 

.  For smaller population sizes, deviations from this value of Λ were observed, 

and could be accounted for by replacing 

1/ ijN � q

ijT ∗  by the appropriate expectation of the delay 

time (to be described elsewhere), provided .  When population size is so small 

that slower phenotypes are not sufficiently represented (

1/ ijN q>

1/ ijN q< ), the theory presented 

here may not hold. 

 

7.  Phenotypic Memory 

 Suppose the probability of a transition to environment i depends both on the 

current environment, j, and on the previous environment, k.  We define composite indices 

I = (i, j) and J = (j, k), and write bIJ to mean the probability of a transition to environment 

i, given that the pair of environments consisting of k followed by j has occurred.  In a 

similar manner, we can consider the phenotypic history of an individual, i.e. the series of 

phenotypic transitions that occurred in its ancestral lineage going backwards in time.  By 

phenotypic memory we mean the ability to remember a finite number of these transitions, 

including the current phenotype.  We stress that such memory is long-term in the sense 

that the given individual remembers not only its immediate ancestor’s phenotype (this 
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will usually be identical to its own phenotype, if switching rates are small), but also the 

phenotypic states of the last few phenotypic transitions in its ancestral lineage.   

 We use HIJ  to denote the rate of switching to phenotype i from phenotypes j that 

were previously k (in the ancestral lineage).  The generalization to memory of m 

phenotypes, and m-point environmental correlations, is by composite indices of the form 

I = (i0, i1, …, im-1) and J = (i1, i2, …im).  Here our convention is that the ability to 

remember only the current phenotype, in a fluctuating environment whose transition 

probabilities depend only on the current environment, corresponds to m = 1, i.e. the case 

considered in the main text. 

 With this notation, the expression for SΛ given in the main text holds, for small 

switching rates, when all indices are replaced by composite indices.  To see this, for 

example if m = 2, consider the derivation of equation (1) and suppose that an 

environmental transition  J = (i1, i2) to I = (i0, i1) occurs.  The leading phenotype at the 

end of environment J is of the type i1 (more precisely, it is an i1 that came from i2, or 

simply phenotype J).  There is also a subpopulation of i0 at the end of environment J, 

specifically i0 that came from i1, or simply phenotype I.  When the environment switches 

to i0, this phenotype I will be amplified until it dominates the population.   

 The optimal switching rates are again given by ( ) /IJ IJ JH optimal b τ= .  As in the 

case of sensors, there is a maximal cost for which memory is beneficial.  If we let Ienv(m) 

be the environmental entropy when m-point correlations are considered, and be 

the corresponding Lyapunov exponent, then a basic theorem in information theory (3) 

states that etc.  The difference in growth rate between 

organisms with m-point memory vs. 1-point memory is given by 

S( )mΛ

  = (1) (2) (3)...env env env envI I I I≥ ≥
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( )S S( ) (1) (1) ( )env envm I Iτ Λ − Λ = − m , assuming that iτ  and ( )k
if  are unchanged and 

depend only on the current environment.  If the cost of such memory is cm, memory is 

beneficial for 1 ( (1) ( )m env envc I I m
τ

< − ) . 

 We stress that our analysis and results pertaining to phenotypic memory are 

justified only in the limit of very large populations, and small switching rates.  For finite 

populations, a more delicate treatment is necessary, which we will not undertake here.  

To see why, consider a small population and a very long-lasting environment J = (i1, i2).  

Eventually, the population will be dominated by phenotype i1, but because of the small 

population size and long environmental duration, we cannot neglect the fact that other 

phenotypes will eventually switch to phenotype i1.  Thus, the population at the end of 

environment J may be dominated by a mixture of phenotypes (i1, ik), for various values of 

k, rather than only the phenotype J. 

 

 

8.  Natural Selection and Phenotype Switching Mechanisms 

Natural selection can maintain a phenotype switching mechanism, as follows.  Suppose 

that in environment i a mutation arises (with frequency ω ) abolishing switching.  The 

new genotype grows at a rate ( )i
if , while the switching genotype grows at a rate 

( )i
i iif H− .  The time to fixation is log(1/ ) / log(1/ )ii iHω τ ω= , for optimal switching 

rates.  Since ω  is small ( ), this time is longer than 1� iτ .  If typical durations of the 

environment are close to iτ , the mutation will not reach fixation.  The same holds for non-

optimal switching rates, provided that Hij  are small.  The mechanism can be lost, 
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however, if a very long environmental duration occurs.  The width of the distribution of 

environmental durations and the behavior of its tail thus play a role in determining 

whether a switching mechanism can be maintained.  Certain strains of Candida albicans, 

for example, do not switch phenotypes, and may have lost the ability to do so. 
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Figure Caption 

 

 

Figure S1:  Dependence of the Lyapunov exponent on environmental fluctuations.  

Numerical computation used the matrices  and .  

To calculate each point, we generated a realization of the changing environment in which 

each environment occurred L times, the duration of environment 2 was fixed at 20 hours, 

and the duration of the k-th occurrence of environment 1 was a random variable .  We 

computed the matrix product 

1 6

2 0.05
10 0.05

A −

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

2 6

7 0.05
10 0.05

A −

−⎛ ⎞
= ⎜ ⎟−⎝ ⎠

(1)
kT

( )(1)
1220

1
k

L T AA
k

G e e
=

= ∏ , and then estimated the Lyapunov 

exponent using the formula  log(Tr( )) / 2G Lτ Λ = , taking L = 100 (see (4)).  We averaged 

this value over 100 separate runs.  A. The Lyapunov exponent plotted for  having an 

exponential (large open squares), a uniform (medium open squares), or a delta (small 

filled squares) distribution.  The uniform distribution extended from 0 to 

(1)
kT

12τ , the rate of 

the exponential distribution was 11/τ , and the delta distribution was centered at 1τ .  B.  

The Lyapunov exponent plotted for the three distribution from panel A, but each 

distribution was shifted by 10 hours.  This was done using ( )(1)
12 120 10

1
k

L T AA A
k

G e e e
=

= ∏ .  

The solid line is the computation of τ Λ using equation (6). 
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