Supplementary Online Material

In the following sections, we present our approach to calculating Lyapunov exponents.

We derive our central result
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ij=1
directly from the growth equation

X(t) = Ay X(t) )
We then use perturbation theory to show how the lag times (expressed in terms of
eigenvector projections) can be calculated to arbitrary precision in terms of the switching

rates H; . We give a more general formulation than in the main text, allowing the

number of environments (n) to be different from the number of phenotypes (m). We use

notation introduced in Figure 1, main text.

1. Lyapunov Exponents for Structured Population Growth

In order for our general approximation to be valid, we require the top eigenvalue of the
matrices A; to be real, and for there to be a gap in the eigenvalue spectrum between the
two eigenvalues of largest magnitude. Furthermore, we will restrict our discussion to
cases when the top eigenvector is non-negative. In the case of responsive switching,
these conditions hold, as seen in section 3. In the case of spontaneous stochastic
switching, these conditions are guaranteed by the Perron-Frobenius theorem. We apply

the theorem to the nonnegative matrix A + y 1, where | is the identity matrix and yis a

large positive constant. The eigenvectors of this matrix are identical to those of Ai. As



long as each phenotype can give rise to any other phenotype, via some sequence of

switchings, the matrix A + 1 is primitive, and the theorem may be applied. Primitivity

holds trivially if all switching rates are strictly positive.

We subdivide time into consecutive intervals in which the environment variable

&(t) does not change. The duration of the I-th such interval is denoted T, and the total

L
time elapsed by the end of the L-th interval is denoted t, = ZT| , Where to = 0. The state

1=1
of the environment during interval | is denoted &(1).

We introduce the generalized eigenvectors v which bring the matrix A to its

Jordan-block form. That is, if we define the matrix M, = [VH

VH , then the

matrix M, *A M, is in Jordan-block diagonal form (1). The eigenvalue associated with
the r-th eigenvector is denoted A (A, ), and these are decreasing with increasing r, and
appear with multiplicity (the top eigenvalue is non-degenerate).

If durations T, are sufficiently long (we will explain what this means shortly), the
direction of the population vector at the end of the (I-1)-th interval is very close to that of

the top eigenvector of environment £(I-1). Thus x(t,_,) = N(t,_,)v:‘™ , where we choose

m
the top eigenvectors normalized so their entries sum to one: Z(vi‘)S =1 for all k (this is
s=1

always possible due to the positivity of the top eigenvectors). When the environment
changes, we may then simply project this top eigenvector onto the new eigenbasis to

describe the dynamics in the new environment. Projecting X(t,_,) onto the eigenbasis of

environment &(I), the component along the new top eigenvector vi™ is given by



QomyeanN(t1), Where q; =e,-M;"M e, and e, = (1,0...,0). Note that g is
independent of the magnitudes of all eigenvectors other than the top eigenvectors, and

thus our prescribed normalization of vy uniquely determines g .

The time evolution of N(t) for t,_, <t <t is then given by

N® = (oo™ > +GE) N (L) (3)

where G(T) is a function that grows slower than e A0T and G(0)=1-q The

e(Ne(1-1)
exact form of G(T) depends on the lower eigenvalues of A_,, and their multiplicities, and

on the projection of vi!™ onto their corresponding eigenvectors. The Lyapunov

exponent is then given by the following limit:
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where 7 = Elm IL (the average duration of environments).

The approximation in (4) is valid when q_,,,_,e"*®”"" > G(T,). This can be

e(e(l
achieved if T, are sufficiently long. We have an explicit bound on G(T) when the other

L (A;y)T

eigenvalues are non-degenerate: G(T) <mK_, ., 1€ , Where

. m -
K = max (e, ~Mi‘1vl‘)2(v'r)s and e, are the standard Euclidean basis vectors. Thus the
r# pary

following condition is sufficient:
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If we define T, = max{ Iog( ! ]} , then our approximation is valid for
b 0;j

environmental durations T, >T_. . The true Lyapunov exponent approaches the

approximation exponentially fastin T,, for T, > T,

min !

due to the exponential decay of the

correction term neglected in (4), so the approximation is a very good one in this regime.

We can further simplify equation (4) if we assume that environmental changes

follow the Markov chain b;;. We denote the duration of the k-th occurrence of

environment i using the random variable T,” (this is just a regrouping of the random
variables T)). For fixed i, we assume that the variablesT,"” are independent, identically-

distributed variables, with meanz,. If L is the number of intervals elapsed, then for large

L, the number of occurences of environment i approaches p; L, and of the environment

pair j followed by i approaches pjbjL, so the Lyapunov exponent is

A =lim ZpZ TOA(A)++ Zpb.,Llogqu

(6)

= Z Pz (A)+ Z p;b; log g
i1 i1
This is our central result allowing computation of Lyapunov exponents for
structured population growth. It can be interpreted in terms of delay times as follows.
The quantity g;j is the projection of the population vector at the end of environment j onto

the top eigenvector of the new environment i (the projection operation uses the new

eigenbasis, via the matrix M;™*). If the population size is N, then N g is the size of the



subpopulation initially growing at the rate 4 (A ) when the environment changes.
Defining the delay time T as the amount of time it takes this subpopulation to reach a

size of N, we find T; =—(logq;)/ 4 (A) , and substituting this into the above equation,

we obtain equation (1). Rewriting condition (5) using this definition, we find

log(mKj) +Tij*/11(Ai)) , Where T is the environmental duration.

T>>;(
4L (A)-4,(A)

Computation of Lyapunov exponents is now reduced to computation of log g
and 4 (A), which is done for spontaneous and responsive switching in the next two

sections. It is sometimes easier to directly compute the delay times T, and this gives

identical results, as shown in section 4.

2. Lyapunov Exponent for Stochastic Switching

Assuming that the stochastic switching rates are small compared to the growth rates, we

can use perturbation theory to write the eigenvalues and eigenvectors of A, to first order

in H®

i+ and use these expressions in equation (6) to compute the long-term growth rate.

The formulae for the eigenvectors, v¥, and eigenvalues, A (A ), of the matrix A_are as

follows (2): vy =e, +> Ci%,, and 4, (A)=f® -HY, where A{’ = /- £,

CH =HMIAL, for i=j,and C{? =0 foralli. We will use C™* to refer to the matrix

with entries C{©.



Returning to the definition of ; , and using «; to denote the fastest-growing
phenotype in environment i, we can write g; =e,, - MM €, - This expression gives the
correct value for g; when the order of the eigenvectors appearing in the matrices M; and

M is arbitrary. We expand MM ; to first order in the switching rates:

MM =(14CP) - (14CD) = (1-CP)-(1+CP )~ 1 +CD —C®

where | is the identity matrix. It follows that q; =5, +C{) ~Cl) . If o =a;, we

have log(q;) =0 to first order, and if o, # a;, log(q;) = |09(C0((2] -Co, ) Using these

expressions in equation (7) gives the Lyapunov exponent to first order:

- HP  HEY
TAg = Z PiTi ( fOfil) B H{S{:Li )+i j;w Piby Iog{ A(jI)J " A(il) | }

In the case that H{’ =H, , and o, =i, we recover the expression given in the main text.

ij

If the perturbation expansion were carried out to second order, terms linear in H

would appear in the second sum above, with coefficients that are independent of z,.
Since the linear terms in the first sum are proportional to z;, for large z; we are safe in
ignoring any linear contribution coming from the second sum. Using higher order
perturbation theory for the eigenvalues and eigenvectors, the Lyapunov exponent can be
calculated as a series expansion in H,, if desired. Notice that the use of «; above allows
one to examine the general case in which the number of phenotypes and environments are

not necessarily equal. We note that the case of n environments and m phenotypes, with

n >m, can be mapped, by appropriate choice of parameters, to a problem of m



phenotypes in m environments, with the Lyapunov exponent taking the same general

form as the expression given in the main text.

3. Lyapunov Exponent for Responsive Switching

In the case of responsive switching, the matrices Ay take the following form:

fl(k>_Hm 0 0
0 £ _H_ 0
A= H, o ",
0 f9—H, 0
0 0 f0O_H_
. : . H
The matrix of eigenvectors of A¢ and its inverse are as follows, where rj(k) = _H—mA‘k) :
mt Joy
1 0 0 1 0 0
1 0 0 0 0
Y O L T N T LN 10
k — Ay iy m k ™ [0 Qi1 m
o - 0 1 0 o - 0 1 0
o - 0 0 1 o - 0 0 1
Since the leading eigenvector in environment k is €, , we find g, =-r = _Hn
ay 1 a; Hm +A(I)

a;q;

Using equation (6), the Lyapunov exponent is given by

TAR = Z p.7, fofii) - z P;b; Iog(1+ASJ_)ai /H,)
i=1 i

i,j=1
Taking «, =iand replacing f® by f® —c, we obtain the expression given in the main

text.




4. Method of Delay-Times for Computing Lyapunov Exponents
The results of the previous two sections can also be derived by calculating the delay

times T introduced in section 1, and using the relation logq; =—4,(A)T; in equation

(6) to compute the Lyapunov exponent. As explained previously, the delay time T, is

the amount of time it takes, upon a change of environment from j to i, for the
subpopulation growing at the fastest rate in environment i to reach a population size equal
to the total population size that was reached at the end of the environment j. These times
can therefore be computed directly by solution of differential equations, as follows.
We will make repeated use of the following pair of equations
X =7X
X =% + §xj

whose solution is x;(T) :(xi (0)+y%ijj (0))e7iT +y%yixj (0)e”" .

For responsive switching, assume the population has reached a size N at the end

of environment j. The population is almost entirely composed of phenotype j. When the

environment changes to i, phenotypes j switch to phenotype i at a rate Hp,. Tij* is the time

it takes for phenotype i to reach a size of N. In the above equations, this corresponds to

y;=f0-c—H_, »,=1"-c,and 5=H,,and T; is found by solving x (T;) =N

T

. Hp (0 —c)Ty T
For large Hi, 7, > 7;, we can simply solve <5t~ Ne " =N | finding

T, =(f” —c)"log(1+ A% /H,). Note that this expression holds for small Hy, as well,

. . . * . - - . . - « T .
since small Hy implies T;; is large, so we are again justified in ignoring term e’ . Since



the best phenotype in environment i does not switch to any other phenotype,

A(A)= 1" —c.
For stochastic switching with small switching rates, the fastest phenotype in
environment j has reached a population size = N , and there is a small amount of

phenotype i due to switching at rate H;; from phenotype j. This amount is found by

taking y, = fV—H,, »,= f =H,, and § = H; in the above equations, and assuming

. . . N (1) .
that T is long enough and switching rates H are small, x,(T) = ﬁxj (O)ef‘JT . Since

X; ©)e""™ ~ N , we find the amount of phenotype i is equal to HN/(fP - £0). When

the environment switches to i, TJ is approximately the time it takes phenotype i to reach

size N. This is found by solving x(T;) =N with y; = {0 —H,, .= {9 -H,;, 5=H,,
X;(0) =~ N, and x;(0) » H;N /(f " — £) giving

T, =—%Iog(L+L)=ﬁlog(A§/Hij) to lowest order in H;; . Since Hj is small,

fj(J)_fi(J) fi(l)_fj(l)

TJ can be written as in the responsive case: Tij* zﬁlog(ﬂ Aﬁ / Hij) . The top eigenvalue

to first order in switching rates is 4, (A)= f® -H,.
5. Lyapunov Exponents and Environmental Fluctuations

The Lyapunov exponent determines the long-term growth rate of a population

characterized by growth/switching matrices Ax when presented with a changing

environment given by the process £(t). Remarkably, equation (1) shows that, provided

the environments remain constant for long enough periods, the long-term growth rate will



depend only on the mean durations of the environments, z,, and on the pairwise
correlations between them, b; and will not depend on other characteristics of the

environmental fluctuations.

To see this directly, we undertook the following numerical exercise. We
considered two environments and two phenotypes, described by a pair of 2-by-2 matrices,
A1 and A,. In this case, b; is trivial, as environment 1 always follows environment 2, and
vice versa. The only non-trivial environmental fluctuation is due to the process
generating the durations of each environment. For simplicity, we kept the duration of

environment 2 constant, that is, if T, is the duration of the k-th occurrence of
environment i, we took T,”) =z, for all k. The random variables T thus have the delta
function probability distribution, centered at the value z, .

For the duration of environment 1 we examined three different distributions:
uniform, exponential, and delta function. For each distribution, we generated many
realizations of the environment, and calculated the Lyapunov exponent numerically. In
Figure S1A, we plot the Lyapunov exponent as a function of z,. The exponent depends
strongly on the distribution that determines the environmental fluctuations. According to
equations (1) and (5) we expect the exponent to become independent of the exact
distribution if T® is always larger than some cutoff value. Taking this cutoff to be 10,
and using the same three distributions, we find in Figure S1B that this is indeed the case:

the Lyapunov exponents calculated using different distributions for T,* are identical, and

depend only on the mean duration, ;.

10



This conclusion holds only if the environmental durations T are all sufficiently
large, more precisely, if T > T __ forall kand i. In this case, equation (1) also gives a

way to calculate the exponent. The result of this exact calculation is given by the solid
line in Figure S1B, showing that equation (1) is in excellent agreement with the

numerical results.

6. Lyapunov Exponents for Finite Populations

So far we have allowed the population size to grow without bound. Suppose instead that
a maximum population size, N, is imposed, for example by periodic resampling. The

Lyapunov exponent, as defined by A = !Lrg%log N (t), would be zero, because the total

population size asymptotically would not grow. If two different strains of organism were
competing within a fixed population size, however, one would eventually go extinct. A
more general definition of the long-term growth rate must therefore exist, which we now
describe.

From the original population growth given in (2), we see that the total population
size, N(t), obeys the equation N(t) =", f,(t)x (t) = (3, fi()n () N(t), where f,(t) and

n,(t) = x (t)/ N(t) are the growth rate and frequency of phenotype i at time t. Solution of

t

this equation yields N (t) = N(0) eprZi f.(t")n, (t')dt'j , suggesting the following
0

definition of the long-term growth rate:

A=limd > f,@)n, ")t (8)

11



This definition has the advantage of depending only on the frequencies of
phenotypes, so it is meaningful even when population size is fixed. For unlimited

growth, A =limilog N(t), so it agrees with the previous definition. Calculation of A for
t—o

finite-size populations using stochastic simulations was performed and was in excellent
agreement with the calculated value given by equation (1), for population sizes

N >1/q;. For smaller population sizes, deviations from this value of A were observed,

and could be accounted for by replacing T; by the appropriate expectation of the delay
time (to be described elsewhere), provided N >1/q; . When population size is so small
that slower phenotypes are not sufficiently represented (N <1/q; ), the theory presented

here may not hold.

7. Phenotypic Memory

Suppose the probability of a transition to environment i depends both on the
current environment, j, and on the previous environment, k. We define composite indices
I =(i, ) and J = (j, k), and write b;; to mean the probability of a transition to environment
I, given that the pair of environments consisting of k followed by j has occurred. In a
similar manner, we can consider the phenotypic history of an individual, i.e. the series of
phenotypic transitions that occurred in its ancestral lineage going backwards in time. By
phenotypic memory we mean the ability to remember a finite number of these transitions,
including the current phenotype. We stress that such memory is long-term in the sense

that the given individual remembers not only its immediate ancestor’s phenotype (this

12



will usually be identical to its own phenotype, if switching rates are small), but also the
phenotypic states of the last few phenotypic transitions in its ancestral lineage.

We use H,; to denote the rate of switching to phenotype i from phenotypes j that
were previously k (in the ancestral lineage). The generalization to memory of m
phenotypes, and m-point environmental correlations, is by composite indices of the form
I = (io, i1, ..., Im-1) @nd J = (iy, iy, ...Im). Here our convention is that the ability to
remember only the current phenotype, in a fluctuating environment whose transition
probabilities depend only on the current environment, corresponds to m = 1, i.e. the case
considered in the main text.

With this notation, the expression for Ag given in the main text holds, for small

switching rates, when all indices are replaced by composite indices. To see this, for
example if m = 2, consider the derivation of equation (1) and suppose that an
environmental transition J = (iy, i) to I = (io, i1) occurs. The leading phenotype at the
end of environment J is of the type i; (more precisely, it is an iy that came from i,, or
simply phenotype J). There is also a subpopulation of i, at the end of environment J,
specifically ig that came from i, or simply phenotype I. When the environment switches
to ip, this phenotype I will be amplified until it dominates the population.

The optimal switching rates are again given by H,, (optimal) =b,; /z,. Asin the

case of sensors, there is a maximal cost for which memory is beneficial. If we let l¢n,(m)

be the environmental entropy when m-point correlations are considered, and Ag(m) be

the corresponding Lyapunov exponent, then a basic theorem in information theory (3)

states that I, =1, @ =>1,,(2)>1,,(3)...etc. The difference in growth rate between

organisms with m-point memory vs. 1-point memory is given by

13



r(As(m)—-As@) =1, @) -1, (m), assuming that 7, and f,* are unchanged and

depend only on the current environment. If the cost of such memory is ¢, memory is
- 1
beneficial for ¢, <—(l,,, (1) -1, (m)).
T

We stress that our analysis and results pertaining to phenotypic memory are
justified only in the limit of very large populations, and small switching rates. For finite
populations, a more delicate treatment is necessary, which we will not undertake here.

To see why, consider a small population and a very long-lasting environment J = (iy, iy).
Eventually, the population will be dominated by phenotype i3, but because of the small
population size and long environmental duration, we cannot neglect the fact that other
phenotypes will eventually switch to phenotype i;. Thus, the population at the end of
environment J may be dominated by a mixture of phenotypes (is, ix), for various values of

k, rather than only the phenotype J.

8. Natural Selection and Phenotype Switching Mechanisms

Natural selection can maintain a phenotype switching mechanism, as follows. Suppose

that in environment i a mutation arises (with frequency @) abolishing switching. The

new genotype grows at a rate f,, while the switching genotype grows at a rate

f —H,. The time to fixation is log(1/ @)/ H, =, log(l/ ), for optimal switching
rates. Since @ is small (<« 1), this time is longer than z,. If typical durations of the
environment are close toz;, the mutation will not reach fixation. The same holds for non-

optimal switching rates, provided that H;; are small. The mechanism can be lost,

14



however, if a very long environmental duration occurs. The width of the distribution of
environmental durations and the behavior of its tail thus play a role in determining
whether a switching mechanism can be maintained. Certain strains of Candida albicans,

for example, do not switch phenotypes, and may have lost the ability to do so.
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Figure Caption

Figure S1: Dependence of the Lyapunov exponent on environmental fluctuations.

: : : 2 005 -7 0.05
Numerical computation used the matrices A =| and A, =| | :
10~ -0.05 10 -0.05

To calculate each point, we generated a realization of the changing environment in which

each environment occurred L times, the duration of environment 2 was fixed at 20 hours,

and the duration of the k-th occurrence of environment 1 was a random variable T". We
computed the matrix product G = H:(_:l(eZOA?eTk(DA‘) , and then estimated the Lyapunov

exponent using the formula z A =log(Tr(G)) /2L, taking L = 100 (see (4)). We averaged
this value over 100 separate runs. A. The Lyapunov exponent plotted for T,” having an

exponential (large open squares), a uniform (medium open squares), or a delta (small

filled squares) distribution. The uniform distribution extended from 0 to 2z, , the rate of
the exponential distribution was 1/z,, and the delta distribution was centered at z,. B.

The Lyapunov exponent plotted for the three distribution from panel A, but each

distribution was shifted by 10 hours. This was done using G = I_L;(ezo’*?eT*mA‘elOAi )

The solid line is the computation of t A using equation (6).
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Figure S1
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