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Abstract. We propose a simple experiment to study delocalization and extinction in inho-
mogeneous biological systems. The nonlinear steady state for, say, a bacteria colony living
on and near a patch of nutrient or favorable illumination (“oasis”) in the presence of a drift
term (“wind”) is computed. The bacteria, described by a simple generalization of the Fisher
equation, diffuse, divideA → A+A, dieA → 0, and annihilateA+A → 0. At high wind
velocities all bacteria are blown into an unfavorable region (“desert”), and the colony dies
out. At low velocity a steady state concentration survives near the oasis. In between these two
regimes there is a critical velocity at which bacteria first survive. If the “desert” supports a
small nonzero population, this extinction transition is replaced by a delocalization transition
with increasing velocity. Predictions for the behavior as a function of wind velocity are made
for one and two dimensions.

1. Introduction and summary of results

Bacterial growth in a petri dish, the basic experiment of microbiology, is a familiar
but interesting phenomenon. Depending on the nutrient concentration and agar con-
centration, a variety of intriguing growth patterns have been observed [1–4]. Some
regimes can be modeled by diffusion limited aggregation, others by Eden models
[5], and still others exhibit ring structures or other two-dimensional modulations
in the bacterial density. At high nutrient concentration and low agar concentration,
there is a large regime of simple growth of a circular patch (after point innoculation),
described by a Fisher equation [6], and studied experimentally in Ref. [1].

Of course, most bacteria do not live in petri dishes, but rather in inhomogeneous
environments characterized by, e.g., spatially varying growth rates and/or diffusion
constants. Often, as in the soil after a rain storm (or in a sewage treatment plant),
bacterial diffusion and growth are accompanied by convective drift in an aque-
ous medium in the presence of disorder. By creating artificially modulated growth
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environments in petri dishes, one can begin to study how bacteria (and popula-
tions of other species) grow in circumstances more typical of the real world. More
generally, the challenges posed by combining inhomogeneous biological processes
with various types of fluid flows [7] seem likely to attract considerable interest in
the future. The easiest problem to study in the context of bacteria is to determine
how fixed spatial inhomogeneities and convective flow affect the simple regime
of Fisher equation growth mentioned above. In the remainder of this section we
summarize some new results which are discussed in more detail in the following
sections.

A delocalization transition in inhomogeneous biological systems has recently
been proposed, focusing on a single species continuous growth model, in which the
population disperses via diffusion and convection [8]: the Fisher equation [6] for
the population number densityc ≡ c(x, t), generalized to account for convection
and an inhomogeneous growth rate, reads [8,9]

∂c/∂t = D∇2c − v · ∇c + U(x)c − bc2, (1)

whereD is the diffusion constant of the system,v is the spatially homogeneous
convection (“wind”) velocity, andb is a phenomenological parameter responsi-
ble for the limiting of the concentrationc to some maximum saturation value (by
competition processes such as two individual bacteriaAmeeting and subsequently
dying due to lack of foodA+A → 0 [9]).U(x) is a spatially varying growth rate
reflecting a spatially varying nutrient concentration, or, for photosynthetic bacte-
ria, an inhomogeneous illumination pattern [8]. In general,U(x)may be a random
variable with parameterx, with (short range) correlations given by the (short range)
correlations of the nutrient distribution. Numerical and some analytical results for
this case are given in [14,8]. In the special case thatU(x) is constant over the entire
sample, the convection term−v · ∇c has no effect on the growth of the bacteria.
Only the introduction of a spatial dependence for the growth rateU(x) makes the
convection term interesting. In the following we consider a particularly simple case
of a “box car” shape forU(x), imposing a positive growth ratea on a favorable
patch where bacteria can divide quickly (“oasis”) and a negative growth rate−εa
in the more hostile region outside, where division ceases or proceeds at a greatly
reduced rate (“desert”) [10]:

U(x) =


a, for |x| < W

2 ,

−εa, for |x| ≥ W
2 ,

(2)

whereW is the diameter of the oasis. Experimentally this could be realized using
a very simple setup, which both illustrates the basic ideas of localization and delo-
calization, and leads to interesting further questions. A one-dimensional example
is shown in Fig. 1, where a solution with photosynthetic bacteria in a thin circular
pipe, or annular petri dish, is illuminated by a fixed uniform light source through a
mask, leading to a “box car” intensity distribution. The mask is moved at a small,
constant velocity around the sample to simulate convective flow. (Moving the mask
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Fig. 1. Experimental setup: a solution with photosynthetic bacteria in a circular pipe or a
thin annular track in a petri dish, is illuminated only in a small area, while the rest of the
sample is either kept dark or illuminated with reduced intensity. The light source is moved
slowly around the sample to model convective flow. The bacteria are assumed to divide in
the illuminated area (“oasis”) at a certain growth ratea > 0, and die (or grow modestly) in
the remaining area (“desert”) with growth rate−εa.

is equivalent to introducing convective flow in the system, up to a change of ref-
erence frame [11].) The bacteria are assumed to divide in the brightly illuminated
area (“oasis”) at a certain rate, but division ceases or proceeds at a greatly reduced
rate in the darker region (“desert”) outside. As a result, the growth rate in this con-
tinuum population dynamics model is positive in the oasis and small (positive or
negative) in the surrounding desert region. Note that the circular shape of the tube
defines the boundary conditions for Eq. (1) to be periodic: the concentration of the
bacteria and its spatial derivative are set to be equal at the two ends of the sample.
Periodic boundary conditions are physical – in the oceans, for example, huge cir-
cular currents carry diffusing phytoplankton through an inhomogeneous nutrient
distribution [12]. Using this simple nonlinear growth model, we discuss predictions
for the total number of bacteria expected to survive in the steady state, the shape
of their distribution in space and other quantities, as a function of the “convection
velocity” of the light source. It is interesting to consider the class of biological
situations discussed in this paper in the context of the “critical size problem” in
population dynamics [13]. In the critical size problem one asks for the minimal size
of habitat for the survival of a population undergoing logistic growth and diffusion,
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where the region is surrounded by a totally hostile environment, i.e., no drift and
an infinite death rate outside the oasis. We show here that the linearized version
of the critical size problem is closely related to a well known problem in quantum
mechanics, and present a generalization of this problem to include other types of
surrounding environments, as well as the effect of drift. The linearized version of
Eq. (1) aroundc = 0 reads

∂c/∂t = Lc, (3)

with the linearized growth operator

L = D∇2 − v · ∇ + U(x). (4)

(We discuss later the validity of this linear approximation and compare the results
with lattice simulations of the full nonlinear problem.) For nonzero convection ve-
locity v, L is non-Hermitian, but it can still be diagonalized by a complete set of
right and left eigenvectors,{φRn (x)} and{φLn (x)}, with eigenvalues0n [14,8], and
orthogonality condition

∫
ddxφLm(x)φ

R
n (x) = δm,n, (5)

(d is the dimension of the substrate, we focus here ond = 1 ord = 2). Writing the
density as a superposition of right eigenvectors with time dependent coefficients,
and using Eq. (3) leads to the following expression for the time evolution ofc

c(x, t) =
∑
n

cnφ
R
n (x)exp(0nt), (6)

where the initial conditions and left eigenfunctions determine the coefficients{cn},

cn =
∫
ddxφLn (x)c(x, t = 0). (7)

Figure 2 shows the complex eigenvalue spectrum with the growth rate (2) for four
different values of the convection velocityv, for a one dimensional lattice ap-
proximation to (4) (see Appendix A) with periodic boundary conditions as in the
experimental setup of Fig. 1. The derivation of these results is discussed in Sect. 2
below. At zero velocityL is Hermitian and all eigenvalues0n are real. There are
bound states (discrete spectrum) and extended or delocalized states (continuous
spectrum) [18]. At finite velocities, all except one of the delocalized states acquire
a complex eigenvalue. States with positive real part of the eigenvalue (Re0n > 0)
grow exponentially with time, states with negative real part (Re0n < 0) decrease
exponentially with time (see Eq. (6)). In a large one dimensional system the “mo-
bility edge” [15], which we define to be the leading eigenvalue (i.e. the rightmost
eigenvalue in the complex parabolas of Fig. 2), is located at the overall average
growth rate

0∗ = 〈U〉 ≡
∫ L

0
dxU(x)/L ' −εa, (8)
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Fig. 2. Complex non-Hermitian eigenvalue spectra (normalized by the difference of the
growth rates inside and outside the oasisU0 = a + εa = 1) at velocities above and below
the extinction transition. The spectra are extracted from numerical simulations of the lattice
model described in Appendix B, for a system of 1000 sites, oasis widthW = 20 sites,
D = 0.3, with growth rateU = −0.5 in the desert andU = +0.5 in the oasis, so that
the average growth rate is−0.48 (which is equal to the mobility edge0∗ up to finite size
effects). The chosen velocity parameters (in units of the Fisher wave velocity in the oasis
vF = 2

√
aD [6]) are v/vF ∼ 0 (circles),v/vF ∼ 0.39 (plus),v/vF ∼ 0.93 (triangles),

andv/vF ∼ 1.39 (squares). The point spectra are slightly offset in they-direction so as
to be able to distinguish the eigenvalues of the localized states for different velocities. As
described in the introduction, the mobility edge remains roughly fixed, and the parabola of
the delocalized eigenvalues opens up asv/vF is increased. The real, localized eigenvalues
move to the left for higher velocities. Atv/vF ≥ 1.39 all states are delocalized. (This figure
actually only shows the part of the spectrum which corresponds to the continuum problem.
The lattice calculation also yields a left part of the spectrum – not shown here – which is an
artifact of the discrete lattice.)

(up to corrections of orderO(1/L) where the system sizeL > W is the mean
circumference of the annulus in Fig. 1). In Fig. 2, the eigenvalues of the local-
ized states compose the discrete, real spectrum to the right of the mobility edge.
With increasing velocity these localized eigenvalues move to the left by an amount
proportional tov2/4D, and successively enter the continuous delocalized spec-
trum through the mobility edge, which remains fixed. The parabola broadens in the
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vertical direction – the imaginary parts of the eigenvalues of the delocalized states
grow by an amount proportional tov. A given localized right eigenfunctionφRn
undergoes a “delocalization transition” when the velocity reaches a corresponding
critical delocalization velocityv = v∗

n, at which its eigenvalue0n has been shifted
so far to the left that it just touches0∗. At higher velocities it joins the parabola
of eigenvalues describing a continuum of delocalized states. The ease with which
such a delocalization transition can be observed experimentally depends on whether
there are growing delocalized eigenstates in the system, i.e., whether the mobility
edge has a positive real value or not. In a large “deadly” desert (〈U〉 ' −εa < 0) all
delocalized states die out, because the mobility edge lies to the left of the origin, as
in Fig. 2. The growth rate of each localized eigenstateφRn then becomes negative at
a corresponding “extinction” velocityvnc which is smaller than the corresponding
delocalization velocityv∗

n. Thus, as convection is increased, the population dies out
before it can delocalize. Later in this paper, we make specific predictions for the be-
havior of populations near the extinction transition, which occurs forv = v0c > vnc
for all n > 0, when the eigenvalue of the localized “ground state” (fastest growing
eigenfunction ofL) passes through the origin.

If the average growth rate〈U〉 is positive (i.e., for a small enough desert or a
small positive growth rate in an infinite desert), the mobility edge lies to the right of
the origin and the delocalization transition can indeed be observed atv = v∗

0 where
the “ground state” becomes delocalized. One expects to seeuniversalbehavior near
this delocalization transition which depends only on a few fundamental properties
of the system, such as symmetries, dimensions and the range of interactions. The
reason is that there is a diverging correlation length present in the system, which
renders microscopic details irrelevant for certain quantities [14,8]. We report pre-
dictions (see also [16]), for quantities such as the dependence of the localization
length on the drift velocity as it approaches the delocalization velocity, and the
shape of the concentration profile near the transition.

A special (universal) behavior is expected for the spatially average growth rate
〈U〉 = 0. In this case the delocalization and extinction velocities coincide. Figure
3 summarizes the different scenarios in a sketch of the phase diagram for large
systems with fixed well depthU0 ≡ (a + εa), tuning the drift velocity, and the
average growth rate〈U〉 = −εa. Also shown in Fig. 3 is a horizontal transi-
tion line at〈U〉 = 0 separating a small velocity region (ε < 0) where localized
modes dominate the steady state bacterial population, from one (ε > 0) contain-
ing a mixture of localized and extended states. The experimental signature of this
interesting transition, (which could be accessed by increasing the light intensity
for photosynthetic bacteria at fixed convection velocity) will be discussed in a fu-
ture publication [16]. It is of course also possible to drive a populationextinctat
zero velocity simply by lowering the average growth rate. This special transition at
〈U〉 = −Uc is indicated at the bottom of Fig. 3. In Sect. 2 we give details of the anal-
ysis of the one-dimensional linearized problem for infinite and finite systems with
periodic boundary conditions. In Sect. 3 some effects of the nonlinear term are dis-
cussed, especially for experiments near the extinction transition, and in Sect. 4 the
two-dimensional case is discussed. The appendices contain some details on the
analytic computation of finite size effects (Appendix A), a brief discussion of a
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Fig. 3. Schematic phase diagram in one dimension for infinite system size, as a function of
average growth rate〈U〉 and convection velocityv. For a deep well (U0 ≡ a+εa � D/W 2)
the extinction transition out of the localized phase occurs whenv = 0 for 〈U〉 = −Uc, where
Uc ' U0. The diagram shows that if the growth rate is negative outside andinsidethe oasis
(i.e.〈U〉 < −Uc), then the only possible state is extinction at any velocity. If there is positive
growth inside the oasis, but negative outside, a localized population can survive in the oasis,
but only for small enough wind velocitiesv. Extended states are present for a small positive
growth rate in the desert (〈U〉 > 0). In this case localized and delocalized states coexist
for small velocities (“mixed phase”), while at large velocities all eigenstates are extended,
as shown in Fig. 6. The ground state becomes delocalized at the critical velocityvc which
marks the phase boundary between the mixed and the extended phase.

lattice model [8] corresponding to the analytic continuum theory (Appendix B),
and a discussion of dimensionless quantities measurable in experiments
(Appendix C).

2. Linearized growth in one dimension

If the left and right eigenfunctionsφR,Ln (x) are localized (i.e., if the convection ve-
locity is small enough, so thatφR,Ln (x) decays exponentially with the distance from
the oasis), one may eliminate the convective term in Eq. (4) via the transformation

φR,Ln (x) = exp(±v · x/2D)ψn(x) (9)

(+ refers to the right eigenvectors and− to the left eigenvectors). The eigenvalue
equation associated with the linearized growth operator (3) becomes Hermitian [17]

0nψn(x) = D∇2ψn(x)+ U(x)ψn(x)− (v2/4D)ψn(x), (10)
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and is equivalent to the familiar “square well potential” problem much studied in
quantum mechanics. This quantum mechanical problem yields the wave function
(or the probability distribution as the square of its absolute value) describing a
point particle with massmmoving around in a “square well” or negative “box car”
potential given by−h̄U(x). Here and in the following ¯h denotes Planck’s con-
stant. With the identificationsa + εa ≡ U0/h̄, whereU0 is a quantum well depth,
0n + εa + v2/4D ≡ |E|/h̄, whereE is a quantum energy level, andD ≡ h̄/2m,
wherem is a mass in the equivalent quantum problem, we can use well known quan-
tum mechanical results [18,19], which we quote in the following sections. Note
that the left and right eigenfunctions for the biological problem at finite convec-
tion velocity are related to the eigenstates of the Hermitian (quantum mechanical)
problem (10) via the transformation (9), while the eigenvalues undergo a rigid shift

0n(v) = 0n(v = 0)− v2

4D
. (11)

2.1. An oasis in an infinite desert: localized populations and the extinction
transition

In an infinite one-dimensional system (i.e., with L → ∞), localized solutions for
φ
R,L
n (x) are given by Eq. (9) with [20]

ψn(x) =




A1,n exp(κnx), for x < −W
2 ,

B1,n exp(iknx)+ B2,n exp(−iknx), for −W
2 < x < W

2 ,

A2,n exp(−κnx), for x > W
2 ,

(12)

whereA1,n, A2,n, B1,n, andB2,n are constant coefficients, and

κn =
√
(0n(v = 0)+ εa)/D, (13)

and
kn =

√
(a − 0n(v = 0))/D, (14)

as can be seen by substituting the above ansatz forψ(x), into Eq. (10). Equation 13
implies

0n(v = 0) = Dκ2
n − εa. (15)

The following sections are devoted to computing0n(v = 0) from matching both
ψn(x) and∂ψn(x)/∂x at the edges of the oasisx = ±W/2, which determines the
coefficientsAi,n, Bi,n, i = 1,2, up to an overall multiplicative factor, as well as
the eigenvalues{0n(v = 0)}. When solving the Hermitian problem one may use
the fact that all the eigenfunctions admit a well defined parity, i.e., they are odd
or even under the transformationx → −x. Even integersn correspond to bound
eigenstates with even parity, whereψn(x), is symmetric underx → −x. In such a
case one obtains, after some algebra, the eigenvalue equation for the quantity

ζn(0n) ≡ knW/2 = W/2
√
(a − 0n(v = 0))/D, (16)
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namely,

cot(ζn) = ζnx̄/

√
1 − (ζnx̄)2, (17)

(which is equivalent to cot(knW/2) = kn/κn), with

x̄ ≡ 2
√
D/(a + εa)/W = 2/(

√
k2
n + κ2

nW). (18)

(The dimensionless parameterx̄ measures the ratio of kinetic to potential energy
in the equivalent quantum problem.) For bound eigenstates with odd parityψ(x),
(ψ(x) antisymmetric underx → −x, denoted by oddn) one obtains

cot(ζn) = −
√

1 − (ζnx̄)2/(ζnx̄). (19)

The highest eigenvalue (with its nodeless, positive eigenfunctionψ0(x)), corre-
sponds to the largest growth rateRe{00}, and is therefore expected to dominate the
system in most cases at long times, as seen from Eq. (6). Its eigenvalue condition
(17) forn = 0 leads to [18]

00(v = 0)+ εa = (a + εa)f (x̄), (20)

wheref (x̄) is a monotonically decreasing function such thatf (x̄) ' 1 − π2x̄2/4
for x̄ � 1, andf (x̄) ' 1/x̄2 for x̄ � 1. Upon inserting Eq. (20) into the expres-
sions forκn andkn one obtains

κ0 =
√
(a + εa)f (x̄)/D (21)

and
k0 =

√
((a + εa)(1 − f (x̄)))/D. (22)

Whenx̄ � 1, the growth rate in the oasis is high compared to the rate of diffusion
through the oasis, and the expression for00(v) simplifies to a standard quantum
mechanical result for a particle in a deep potential well with a correction term
proportional tov2 arising from the change of variables (9) and (11), namely

00(v) ' (v2
c − v2)/(4D) = a −Dπ2/W2 − v2/4D, (23)

with

vc = 2D
√
(a/D − π2/W2), (24)

κ0 =
√
(a + εa)/D − π2/W2 (25)

and
k0 = π/W. (26)

Note that00(v) is negative forv > vc. The velocityvc is therefore also called
“extinction velocity”, since it is the velocity above which even the fastest growing
eigenstate dies out with time. Forx̄ � 1 (i.e. in the presence of strong diffusion)
one finds

00(v) ' (v2
c − v2)/(4D) = (a + εa)2(W/2)2/D − εa −D(v/2D)2 (27)
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with the extinction velocity

vc = 2D
√
((a + εa)W/2)2/D2 − εa/D, (28)

κ0 =
√
(a + εa)2(W/2)2/D2 (29)

and

k0 =
√
(a + εa)(1 − 1/x̄2)/D. (30)

If we take as an effective diffusion constant for motile bacteriaD = 6 · 10−6 cm2 s−1,
and a growth ratea = 10−3 s−1 in the oasis and a much smaller growth rate outside
(0 < |ε| � 1), we get for aW = 2 cm diameter oasis,̄x = 0.077 � 1, and an
extinction velocityvc ' 1.5µm s−1, which is comparable to (less than or equal
to) the Fisher wave velocity [6] in the oasis,vF = 2

√
aD = 1.5µm s−1.

2.2. Finite size effects and the delocalization transition

In the experimental situation, the desert will typically not be infinitely large, but
have a finite system size given by the mean circumferenceL > W of the annulus
in Fig. 1. In the following we compute the eigenvalues0n for this situation. As one
may expect physically, the periodic (circular) arrangement in this situation allows
not only for localized states but also for delocalized states. The eigenvalue equation
for κn(0n) andkn(0n) of the corresponding linearized problem of an oasis of width
W in a finite desert of extentL −W > 0, is obtained using the ansatz in Eq. (9)
with

ψn(x) =




(A1,n exp(κnx)+ A2,n exp(−κnx)), for −L
2 < x < −W

2 ,

(B1,n exp(iknx)+ B2,n exp(−iknx)), for −W
2 < x < W

2 ,

(C1,n exp(κnx)+ C2,n exp(−κnx)), for W2 < x < L
2 ,

(31)

and matchingφR,Ln (x) anddφR,Ln (x)/dx at the edges of the wellx = ±W/2 and
at the edges of the samplex = ±L/2 (imposing periodic boundary conditions).
After some algebra one finds the eigenvalue equation [14] (see also [21])

2knκn(cosh(Lv/(2D))− cos(knW)cosh(κn(L−W)))

+(k2
n − κ2

n)sin(knW)sinh(κn(L−W)) = 0. (32)

Forv/(2D) < Re{κn}, and largeL, Eq. (32) yields

exp(L(v/(2D)− κn))

= cos(knW)− kn/(2κn) · (1 − (κn/kn)
2) sin(knW). (33)

The left hand side vanishes in the limitL → ∞, and the equation reduces to the
bound state equations of a single oasis in a large desert (Eq. (17) for even parity
solutions and Eq. (19) for odd solutions). For finiteL, andv/2D < Re{κn}, the
deviation of the “localized” solutionsκn andkn from theirv = 0 values for smallv
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is exponentially small in L [14]. These “localized” or “bound state” solutions, are
characterized by an exponential decay of the bacterial density in the desert with a
correlation length

ξn ∼ (Re{κn} − v/(2D))−1 (34)

and0n(v) strictly real. However, “delocalized” or “scattering” solutions also exist,
with 0n(v) complex, and nontrivial dependence ofκn andkn on v, even in the
limit of largeL. As the velocity is increased, thenth localized eigenstate becomes
delocalized (ξn → ∞) at the critical delocalization velocityv∗

n given in an infinite
system by

v∗
n = 2DRe{κn}. (35)

This implies
ξn ∼ 1/(v∗

n − v)ν (36)

with the (universal) critical exponentν = 1. We saw that with increasing velocity,
the growth rateRe{0n(v)} for a given eigenstate decreases. It becomes negative
above the corresponding extinction velocityvnc. As was mentioned in the summary
of the results in Sect. 1 we therefore expect that the delocalization transition for the
at long times dominating “ground state” can be observed only ifv∗

0 ≤ v0c. In the
following we discuss the three desert scenarios,ε > 0, ε < 0, andε = 0.

(1) For ε > 0 (a “deadly” desert), of big enough sizeL, one finds that all
delocalized states die out exponentially with time (vnc < v∗

n). The population is
localized around the oasis at smallv and extinct at highv. Figure 2 is a plot of
the eigenvalues0(v) in the complex plane for this case, as derived for the lattice
model discussed in Appendix B. The lower part of Fig. 4 shows a series of profiles
of the ground state eigenfunction close to the extinction transition. In small enough
systems, such that the total effective growth rate

∫ L
0 U(x)dx is positive, delocalized

states can actually have a positive growth rate even forε > 0. (See also Eq. (A2)
in Appendix A, withδκ ∼ O(1/L), andκ̄ ∼ O(1/L).) In this case, the system is
small enough so that the bacteria can traverse the desert quickly, and on average
won’t die before reenterring the oasis in a circular pipe.

(2) If ε < 0, delocalized states should be observable even for very large sys-
tems, because the “desert” can support modest growth, although at a much smaller
rate than in the oasis if|ε| � 1. Growing delocalized eigenstates are present, even
for v = 0, and the population is a superposition of fast growing localized states and
more slowly growing delocalized ones. As the drift velocityv increases, the n’th
localized eigenstate delocalizes atv = v∗

n with a positive growth rateRe0n(v∗
n) (i.e.

v∗
n < vnc). This case allows for an experimental observation of the delocalization

transition: as the velocity is increased, more and more eigenstates delocalize. The
eigenvalue spectrum for two different values ofv is shown in Figs. 5(a) and (b).
We can see that the spectrum at the delocalization transition is slightly different
depending on whether an “even” eigenfunction or an “odd” eigenfunction is about
to delocalize next (“even” and “odd” are to be understood in the sense explained
in Section 2.1). If an odd eigenfunction is about to delocalize next, there exists a
delocalized state which has a purely real growth rate (at the tip of the parabola in
the spectrum of Fig. 5(b)), while no such state exists when an even eigenfunction
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Fig. 4. A series of steady state population profiles for a system with negative average growth
rate, at different drift velocities, for the linear and the nonlinear case. Thex coordinate is
normalized by the widthW of the oasis. In the nonlinear case the populationsc(x, v) are
divided by the population at zero velocity in the middle of the oasisc(0,0). In the “linear”
case, we simply assume the validity of Eq. (44) and rescale the curves such that their max-
imum values match those of the nonlinear case. The profiles were extracted from a lattice
model with 1000 sites, an oasis of widthW = 200 sites, with growth rateU = 0.5 inside
the oasis andU = −0.5 outside, and diffusion constantD = 30. The velocity parameters
are taken to bev/vF = 0 (solid line),v/vF = 0.93 (dotted),v/vF = 0.98 (dashed), and
v/vF = 0.99 (dash-dotted). Close to the extinction transition, where the population is small,
the agreement between the nonlinear and the linear solution becomes quite good. The oasis
occupies the region|x/W | < 0.5 in the figures.

is about to delocalize, as in Fig. 5(a). The essential characteristics of the spectrum
are derived in Appendix A.

The ground state delocalizes at the highest delocalization velocityv = v∗
0, i.e.

for v > v∗
0 all states are delocalized. The lower part of Fig. 6 shows a series of pro-

files of the ground state eigenfunction close to delocalization. One sees that at the
delocalization velocityv∗

0, the correlation lengthξ0 reaches the system size. In an
infinite system it diverges as in Eq. (36), causing certain quantities to be universal
near the transition as we mentioned before. Details for the single oasis system and
more general random systems will be presented in a future paper [16].

(3) Forε = 0, the growth rate of the bacteria exactly balances the death rate in
the desert, they only diffuse. In this case the delocalization velocity and the extinc-
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Fig. 5. Sketches of complex non-Hermitian eigenvalue spectra at two different velocities:
(a) velocityva with v∗

7 < va < v∗
6, wheren = 6 denotes an even eigenstate,i.e.all eigenstates

with n > 6 are delocalized and those withn ≤ 6 are localized; and (b) at a higher velocity
vb > va with v∗

6 < vb < v∗
5 wheren = 5 denotes an odd eigenstate. Upon increasing the

velocity fromva to vb then = 6 eigenstate becomes delocalized atv = v∗
6.

tion velocities coincide:v∗
n = vnc in an infinite system. There is again a diverging

correlation length leading to universal critical behavior near the delocalization tran-
sition [16]. In a finite system the spatially averaged growth rate

∫ L
0 dxU(x)/L is

positive. In small systems, one therefore expects to see delocalized states with a
positive growth rate in experiments for this case as well.
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Fig. 6.A series of steady state population profiles for a system with positive average growth
rate, at different drift velocities, for the linear and the nonlinear case. Thex coordinate is
normalized by the widthW of the oasis(|x/W | ≤ 0.5). In the nonlinear case the populations
c(x, v) are divided byc(0,0), the population in the middle of the oasis, at zero velocity.
Curves for the “linear” case, were computed as in Figure 4. The profiles were extracted
from a lattice model with 1000 sites, an oasis of width 20 sites, with growth rateU = 1.1
inside the oasis andU = 0.1 outside, and large diffusion constantD = 300. The velocity
parametersv/vF are taken to bev/vF = 0 (solid line), 0.17 (dotted), 0.33 (dashed), 0.50
(long-dashed), and 0.83 (dash-dotted). The ground state becomes delocalized as the velocity
is increased beyond the point where the correlation length reaches the size of the system.

These results for one dimension in the limitL → ∞ are summarized in
Fig. 3 which shows a schematic phase diagram for fixed well depthU0 ≡ (a +
εa), as a function of the convection velocity and the average growth rate〈U〉 ≡∫ L

0 dxU(x)/L.

2.3. Delta-function growth rate

Results for a delta-function-like oasis in one dimension, can be easily derived as
a special case of the box car growth rate, by taking the limitε → 0, a → ∞ and
W → 0 with aW = const≡ V0. In this case Eq. (32) simplifies to

κ(cosh(Lv/(2D))− cosh(κL))+ V0 sinh(κL)/D = 0, (37)

which is the same equation as obtained in [14]. With the identificationκ ≡ (−i)K
the results derived there can be applied here: the delocalization picture is the same
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as in Fig. 5(a), except that there exists only one (even parity) bound state solution for
Re{κ} > v/(2D). Again two critical velocitiesvc0 andv∗

0 emerge, in accordance
to the above discussion for a box car type of growth rate.

3. Effects of the nonlinearity

We can also estimate effects due to the nonlinear term in Eq. (1), which leads to a
saturation ofc(x, t) for 0n(v) > 0. The equation of motion becomes

∂c(x, t)/∂t = Lc(x, t)− bc2(x, t), (38)

with L given by Eq. (4). (The coefficientb can be set to 1 by rescaling the density
c(x, t) by b, as in Appendix C.) The solution can be expressed in terms of the
complete set of right eigenstates for the linear problem with new time dependent
coefficientscn(t) with

c(x, t) =
∑
n

cn(t)φ
R
n (x) (39)

and
dcn(t)/dt = 0ncn(t)−

∑
m,m′

wn,mm′cm(t)cm′(t), (40)

where the mode couplings are given by [8]

wn,mm′ = b

∫
dxφLn (x)φ

R
m(x)φ

R
m′(x). (41)

In general one expects that through the mode couplings the fastest growing eigen-
state suppresses the growth rate of the other eigenstates, provided the corresponding
couplings are large enough [8,?]. In the mixed phase of Figure 3 we expect that
the fastest growing bound state suppresses the other bound states, and the fastest
growing delocalized state suppresses the other delocalized states [16].

3.1. Effects of the nonlinearity at the extinction transition

Forε > 0 (and large enough systems so that
∫ L

0 dxU(x) < 0), with velocityv just
below the extinction velocityv0c, we expect that the growing ground state term
c0(t)φ

R
0 (x) dominates the summation (39) forc(x, t). In a first approximation we

neglect allcm(t) with m > 0 and find

dc0(t)/dt = 00c0(t)− w0c
2
0(t), (42)

with w0 ≡ w0,00 = b
∫
ddxφL0 (x)(φ

R
0 (x))

2 > 0. At long times

c0(t) = c0(0)
exp(00t)

1 + c0(0)(exp(00t)− 1)w0/00
(43)

with asymptotic behavior limt→∞ c0(t) = 00/w0. Thus, the steady state popula-
tion profile should be given approximately by

c∗(x) = 00φ
R
0 (x)/w0, (44)
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where
c∗(x) = lim t→∞c(x, t). (45)

The total steady state bacterial populationN0 is

N0 =
∫
dxc∗(x). (46)

It follows that

N0 ' (00/w0)

∫
dxφR0 (x). (47)

Since00 ∼ (v − vc)(v + vc), and
∫
dxφR0 (x) ∼ const+ O(v − vc) asv → vc

from below, one finds that near the extinction transition

N0 ∼


vc − v, for v → v−

c ,

0, for v > vc,

(48)

Figure 7 shows the total populationN0 as a function of the convection velocityv
for an oasis in a desert with negative growth rate, which is large enough so that the
average growth rate is negative also. The data was obtained from a lattice model
for the nonlinear problem (see Appendix A). The displayed convection velocities
range fromv = 0 to velocities larger than the extinction velocityv > vc. One can
see thatN0 decreases linearly withv − vc for v → v−

c , as predicted in Eq. (48).
Figure 4 shows a series of population profiles for increasing velocity, for the linear
case (i.e. taking the ground state of the linear problem as a solution for the steady
state), and for the nonlinear case. One can see that close to the extinction transition
the ground state of the linearized growth is an excellent approximation, as is to be
expected since there the bacterial densityc(x) becomes small, so that mode cou-
plings other thanw0 induced by the nonlinear termbc2(x) become small relative
to the linear terms.

3.2. Limitv → 0

In the linearized case, because Eq. (10) is even inv, we expectN0(t) = ∫
ddxc ∼

const − const ′ · v2 +O(v4) for small velocities. In the nonlinear case this sym-
metry is broken, because of thev dependence of the coefficientswnmm′ in Eq. (41)
which arises from the transformation (9). One then expects in the steady state
N0 ∼ const− const′ · |v| +O(v2) for small velocities. The constants depend on
U(x) and other nonuniversal details.

3.3. Effects of the nonlinearity at the delocalization transition

Figure 6 shows the same information as Fig. 4 for the delocalization transition for
an oasis in a background with positive growth rate. One can see that the linear
approximation (i.e. taking the ground state of the linear problem as a solution for
the steady state), becomes best for high velocities [16], when the drift term in the
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Fig. 7. Numerical results for the total number of bacteriaN0(v) (normalized by the total
number at zero velocityN0(0)) as a function ofv/vF , wherevF = 2

√
aD is the Fisher wave

velocity. The data were obtained using a 1 dimensional lattice model with 100 grid points
(see Appendix B). The diffusion constant isD = 3, the width of the oasis isW = 20, the
growth rate is−0.9 outside the oasis and 0.1 inside. The coefficient of the nonlinear term in
the equation of motion isb ≡ 1. The average growth rate is−0.7< 0 for this system, so that
v0c < v∗

0, and the system goes through the extinction transition atv/vF ' 0.65, above which
N0(v) vanishes. The approximationvc ' vF mentioned in the text does not work quite as
well here as in other cases because the conditionx̄ � 1 necessary for this approximation is
violated weakly for the model parameters chosen here. (x̄ ' 0.35).

equation of motion becomes dominant compared to the nonlinear term. Further-
more the nonlinear solution at low velocities is in the “mixed phase”,i.e., it is a
superposition of extended and localized eigenstates of the system. A decomposi-
tion of thev = 0 nonlinear solution into the eigenstates of the system shows [16]
that its leading contributions are from the localized ground state eigenfunction and
the fastest growing delocalized eigenfunction. As the drift velocity is increased,
the contribution of localized eigenstates clearly diminishes. Forv > v∗

0 the steady
state is composed only of delocalized modes.

4. Two dimensions, infinite system size

Much of the above analysis can be adapted to two dimensions. We again use the
transformation (9) and consider a circular oasis of diameterW in Eq. (10). The
analysis is straightforward, so we omit most of the details. Following Ref. [14],
the qualitative behavior of non-Hermitian eigenvalue spectra for linearized growth
in two dimensions should be as follows: As in one dimension, the eigenvalues of
localized states associated with the high growth rate in the oasis will belong to the
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Fig. 8. Sketch of a complex non-Hermitian eigenvalue spectrum in two dimensions with
localized and delocalized eigenstates. The sketch uses a computation of the spectrum for a
delta function growth rate in two dimensions [14], in which case there is only one bound
state (to the right of the imaginary axis). We expect qualitatively the same result for the
finite two-dimensional well discussed in the text, except that multiple bound states with real
eigenvalues will occur, just as in one dimension.

discrete point spectrum on the real axis. Extended states, however, will occupy a
dense region in the complex plane with a parabolic boundary (see Fig. 8). With
increasingv, the localized point spectrum will again migrate into the continuum. In
the localized regime the spatial distribution of bacteria is in the linear approximation
given by the convection-distorted ground state eigenfunction,

φ
R,L
0 (x) =



C1,0 exp(±v · x/2D)J0(kn|x|) , for |x| < W/2,

C2,0 exp(±v · x/2D)K0(κn|x|) , for |x| > W/2,
(49)

whereJ0(x) andK0(x) are Bessel functions of order zero [22]. The constants
C1,0 andC2,0 are chosen such thatφR,L0 (x) and its radial derivative are continu-
ous at the boundary of the oasis|x| = W/2. The leading eigenvalue00 is again
given by eq. (20), but with different results forf (x̄) [18]: for x̄ � 1 one finds
f (x̄) ' 1 − a2

1x̄
2 wherea1 ' 2.405 is the first zero ofJ0(a); for x̄ � 1 one finds

f (x̄) ' x̄2 exp(−4x̄2). The behavior of the ground state eigenvalue is thus

00 ' a − 4D(2.405)2/W2 −Dv2/(4D) (50)

for x̄ � 1 and

00 ' D(4/W2)exp[−16D/(W2(a + εa))] −D(v/2D)2 (51)
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Fig. 9. Contour plot of the distribution of bacteria in two dimensions as obtained for the
linearized problem for convection velocityv = 0.2 µm s−1 < vc = 1.5 µm s−1 (directed
to the right), withD = 6 · 10−6 cm2 s−1, and growth ratea = 10−3 s−1 in the oasis (of
diameterW = 2 cm) and a much smaller growth rate outside (|ε| = 0.0001 � 1). The
dashed line indicates the circumference of the oasis, the coordinates are given in units of the
radius of the oasis. At high velocities the linear approximation is expected to give the steady
state generated by the full nonlinear equation, provided that the ground state dominates the
long time behavior in Eq. (39) (see text).

for x̄ � 1. From these results one can computev0c for the 2 dimensional case.
As in one dimension, one again finds an extinction transition forε > 0 (“deadly”
oasis) and large enough systems, atvc0 < v∗

0, wherev∗
0/2D ' Re{κ0}, andv0c is

the velocity above which the ground state growth rate00 becomes negative.

Figure 9 shows a contour plot for the spatial distribution of bacteria in the lin-
earized case at convection velocityv below v0c in 2 dimensions, obtained from
Eq. (49). Although the full nonlinear two dimensional problem seems tractable
numerically, we expect that close to the extinction transition the curves for the
linearized case will approximate the shape of the steady state, because the ground
state dominates sums like that in Eq. (39).
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Appendix A: Complex non-Hermitian eigenvalue spectra
for finite system size

To compute the growth rate0n(v) near the delocalization of thenth eigenstate, we
setκ = v/(2D) + δκ − iκ̄ where limL→∞ δκ = 0 [14], and takev to be close
to the correspondingv∗

n. Upon expanding the right hand side of equation (33) in
powers ofv − v∗

n andδκ − iκ̄, one obtains:

exp(−L(δκ − iκ̄)) = cn(v − v∗
n)/v +O(δκ − iκ̄)+O((v − v∗

n)
2), (A1)

wherecn is the derivative of the right hand side with respect tov at v = v∗
n and

δκ − iκ̄ = 0. For evenn one findscn < 0, and for oddn one findscn > 0. Hence,
for evenn, andv < v∗

n, one has to leading orderδκ ' ln[v/(cn(v − v∗
n))]/L and

κ̄ = π(2m + 1)/L, with m any integer. Forv > v∗
n, δκ ' ln[v/(cn(v∗

n − v))]/L
and κ̄ = 2πm/L. Similarly, for oddn andv < v∗

n, δκ ' ln[v/(cn(v∗
n − v))]/L

andκ̄ = 2πm/L, and, forv > v∗
n, one hasδκ ' ln[v/(cn(v − v∗

n))]/L andκ̄ =
π(2m+ 1)/L. At v = v∗

n in either case,δκ ∼ O((lnL)/L) andκ̄ ∼ O((lnL)/L)
[14]. For givenv andκ the value of0 results from above definition ofκ, 0(v) =
Dκ2 − εa −D(v/(2D))2, and thus

0(v) = D(δκ+v/2D)2−Dκ̄2−D(v/(2D))2−εa−2iD(δκ + v/2D)κ̄. (A2)

These results are illustrated in Fig. 5.

Appendix B: Numerical analysis of a discrete lattice model

A discrete lattice model, originally inspired by the physics of vortex lines [14], has
proven very helpful for the numerical analysis of our problem. The correspond-
ing lattice discretization (with lattice constantl0) of the nonlinear equation ind
dimensions reads [8]

dcx(t)

dt
= w

d∑
ν=1

[eg · eν cx+eν (t)+ e−g · eν cx−eν (t)− 2cosh(g · eν)cx(t)]

+U(x)cx(t)− bc2
x(t), (B1)

wherecx(t) is the species population at the sites{x} of a hypercubic lattice, and the
{eν} are unit lattice vectors. Furthermore,(w ' D/`2

0), whereD is the diffusion
constant of the corresponding continuum model, andg ' −v`0/(2D), wherev is
the convective flow rate of the continuum model.U(x) andb have the same inter-
pretation as in the continuum model [8]. The subtraction in the first term insures
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that cx(t) is conserved (d
dt

∑
x cx(t) = 0) if U(x) = b = 0. There are two con-

straints on the mesh size or lattice spacing`0, which ensure that the model correctly
describes the continuum limit for a given eigenstateφRn , derived from the condition
that`0|∇φRn (x)|/φRn (x) � 1. For smallv one requires

kn`0 � 1 and κn`0 � 1. (B2)

For high velocities the condition becomes

v`0/(2D) � 1, (B3)

as follows from Eq. (9). The lattice simulations shown in this paper are well within
these limits.

Appendix C: Dimensionless quantities

The equation of motion can be rewritten in dimensionless form, by introducing
rescaled coordinates,y ≡ x/W , whereW is the width of the oasis, and rescaled
population densities̄c ≡ c/cs , wherecs is roughly the saturation value of the bac-
terial density in the oasis (up toO(ε)): cs = a/b (see Eq. (1)). One then obtains

(W2/D)∂c̄(x, t)/∂t = ∇2
y c̄(x, t)− v̄ · ∇y c̄(x, t)

+ v̄2
F [(U(x)/U0)c̄(x, t)− c̄2(x, t)], (C1)

wherev̄ ≡ vW/D is the dimensionless rescaled drift velocity, andv̄F ≡ 2
√
W2a/D

is the dimensionless rescaled Fisher wave velocityvF = 2
√
Da in the oasis, which

gives the speed at which a Fisher wave [6] would propagate in the oasis. In the case
that the growth rate inside the oasis is high compared to the rate of diffusion through
the oasis (i.e. x̄ � 1 in Eq. (18)) the velocityvF also gives a rough estimate for the
velocity at which the extinction transition takes place, in the appropriate parameter
regime (ε < 0) of the phase diagram of Fig. 3. The basic time scale of the system
is set by the diffusion timeW2/D, which is the time it takes a bacterium to diffuse
across the oasis.
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