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ABSTRACT 

The equilibrium structure of models of differential selection in the sexes 
is investigated. It is shown that opposing additive selection leads to stable 
polymorphic equilibria for only a restricted set of selection intensities, and 
that for weak selection the selection intensities must be of approximately the 
same magnitude in the sexes. General models of opposing directional selection, 
with arbitrary dominance, are investigated by considering simultaneously the 
stability properties of the trivial equilibria and the curve along which multi- 
ple roots appear. Numerical calculations lead us to infer that the average 
degree of dominance determines the equilibrium characteristics of models 
of opposing selection. I t  appears that if the favored alleles are, on the aver- 
age, recessive, there may be multiple polymorphic equilibria, whereas only 
a single polymorphic equilibrium can occur when the favored alleles are, 
on the average, dominant. The principle that the average degree of dominance 
controls equilibrium behavior is then extended to models allowing directional 
selection in  one sex with overdominance in the other sex, by showing that 
polymorphism is maintained if and only if the average fitness in heterozy- 
gotes exceeds one. 

mechanisms that maintain genetic variability involve the balance of 
A:posing forces. Such a balance may be the result of opposing mutation 
pressures, mutation opposing selection, multiple niche selection, or the well- 
known overdominant case, where an allele is favored in heterozygotes but is at a 
disadvantage in homozygotes. Differential selection in the two sexes is another 
mechanism that may produce stable internal equilibria. OWEN (1953) established 
a general mathematical framework for the analysis of differential selection in 
the two sexes, and considered situations that admit of more than a single stable 
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172 3. F. KIDWELL et al. 

equilibrium. BODMER (1965) noted that when fertility effects combine multi- 
plicatively in mating pairs, viability and fertility models lead to qualitatively 
different results only in the case where selective effects are opposed in the two 
sexes. With some selective values (admittedly rather artificial) there may be as 
many as three polymorphic equilibrium states, with two of the equilibria stable. 
Under more reasonable assumptions it is quite possible to have both a stable and 
an unstable polymorphic equilibrium. In this paper, we delineate the regions of 
the parameter space, th3t is, regions in the space of selective values, where quali- 
tatively different types of equilibrium behavior occur. The results show that for 
some models, only a restricted set of selection intensities leads to stable poly- 
morphic equilibria. 

THE MODEL 

OWEN (1953) reduced the problem to one with only two independent param- 
eters by considering the gene frequency ratio in the two sexes at equilibrium. In 
order to investigate regions of stability, we consider pairs of simultaneous equa- 
tions for the two sexes. In the interest of completeness we begin with the general 
model. We consider a single diallelic locus with constant selective values, some 
of which differ between the two sexes, and normal Mendelian segregation. Selec- 
tion is assumed to occur through viability (or fertility) differences, but with no 
dependence of the selection parameter on the mating pair. Discrete generations 
and random mating among selected adults are also assumed. 

We denote the frequency of allele A, in males and females in the mating pool 
by pm and p f ,  respectively. Similarly, the frequencies of allele Az are qna (=l-pm)  
and qf (=1 - p f ) .  Genotypic fitness values are designated wml ( w f l ) ,  W m z  ( w f z )  
and wm3 ( w f 3 )  corresponding to genotypes A,Al, A,A, and A,A2, respectively, in 
males (females). The frequency before selection and the fitness of each genotype 
will be: 

Genotype 
Frequency 
Fitness, males 
Fitness, females 

After selection the genotypic frequencies are: 
Genotype AiAi AiA, AzAz 
Frequency, males W m l P m P f / G n  wmz ( p m q f  + p f q m )  W m  w m s q m q f / w m  
Frequency, females w,lpmpf/Wf W P  (pmqf + P f q m )  W f  wf3qmqf/Zf 

where - 
w m  = wmipmpf + wmz ( P m q f  + p f q m )  + wm3qmqf 
W f  = W f l p m P f  + wfz ( P m q f  + P f q m )  + w f s q m q f  

The frequency of the allele A,  in males after selection, i.e., in the mating pool 
for the following generation, is: 
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and the corresponding frequency in females following selection is: 

173 

The changes in gene frequency are: 

and 

2WflP7nPf + Wfz(pmqf + Pfqm) - 2WfPf 
2Wf APf = 

At equilibrium, Apnz = Apf  = 0 whence, after some calculation: 

(2b) 2 ( W m z  - Wm3)p2m + ( 2 W m 3  - Wm,)Pm 
( 4 W m z  - 2Wm1 - 2Wm3)P2m + (2Wml - 4Wmz 2Wm3)pm + Wn22 

P f  = 

The expression for pm ( p f )  is the ratio of polynomials in p f  ( p m ) .  If we write 
p ,  = f ( p f )  and p f  = g ( p m )  then, by substitution, pm = f [ g ( p m ) ] ,  a quintic equa- 
tion in pm which is easily reduced to a cubic by factoring out the trivial roots 
zero and one. It follows that at most there can be three polymorphic equilibria. 
The resulting cubic equation is, however, very difficult to analyze directly. In  
order to gain some insight into the behavior of models of opposing selection in 
the sexes, we begin by considering the case of additive selection. 

Opposing additive selection 
Under this model the fitness relations are parameterized as wml=l, wmz= 

1-.5sflL, wm,=l--sm, wfl=l-sf, wfz=1-.5si and wf3=l, [s,, s f  E ( O , l ) ] ,  so that 
A, is favored in males but A, is favored in females. Substitution and shnplifi- 
cation of equations (2a) and (2b) yield: 

In  this particular model, the equilibrium equations are quartic equations which 
can be reduced to quadratics by factoring out the trivial roots zero and one. 
Further simplification leads to the conclusion: 

sm - 1 (smsr - s, - S f  + 2 y  p,n = ~ i 
Sm 2SmSf 

Since 0 < sm, sf 5 1,  the first term on the right-hand side is always negative, 
and the term under the radical is always positive. There are, therefore, always 
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3 74 J. F. KIDWELL et al. 

two real roots. It also follows that the only root which can yield admissible 
solutions is: 

sf + 2)1’2 

s, - 1 S,Sf - s, - 
p m = - +  ( 

sm 2SmSf 

The region of admissible equilibria can be obtained by considering the bound- 
aries pnl = 1 and pn2 = 0 and determining sf as a function of s?,~ for these two 
boundaries. For pm = 0 the relation between sf and sn2 bounding admissible 
solutions is: 

Sm 
Sf = -- 1 -sm 

and for pnl. = 1, 
Sm 

Sf = ~ 

1 fs, 

The equilibrium region for values of sm and sf is shown in Figure 1. Equilibrium 
gene frequencies can be easily computed, and such computations show (1 ) that 
equilibrium frequencies in the two sexes can be widely divergent, and (2) that 
average gene frequencies (over sexes) are intermediate (0.25 I p I 0.75) 
throughout most of the equilibrium region. 

The most interesting conclusion that can be drawn from this analysis is that 
weaker selection intensities progressively restrict the parameter space yielding 
admissible equilibria; e.g., s,, sf < 0.3 can maintain variability only if the selec- 
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FIGURE 1.-Portion of the parameter space which yields stable internal equilibria as a 
functioa of the selection intensities in  males (s,) and females (sf) for opposing additive 
selection. 
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REGIONS O F  STABLE EQUILIBRIA 175 

tion intensities are approximately equal. Conversely, an allele which is lethal in 
one sex can be maintained if the selection intensity against the alternative allele 
in the opposite sex is greater than 0.5. Questions regarding the stability of p l y -  
morphic equilibria are taken up in a more general context in a later section. We 
simply note here that polymorphic equilibria are always stable under opposing 
additive selection. This model represents a special case of partial dominance. It is 
therefore of interest to excmine the influence of dominance parameters on the 
equilibrium structure of these models. 

P FEMRLE I 

I 

I 

( 0 , O )  P FEMRLE 

FIGURE 2.-Graphs of equations (2a) and (2b). Solid lines are the graphs of equation (2a). 
FIGURE 2a.-Change of equilibrium gene frequency with variation in the strength of 

-._._ s, = 0.2. Selection in the female drives out the A,  gene and there is no equilibrium. 
_ _ _ _  s, = 1/. The dotted line, i.e., the graph of equation (2b), is tangent to the solid 

line. The trivial equilibrium at (0,O) is changing from stable to unstable. 
s, = 0.45, --s, = 0.55, and --‘--s, = 0.70. As s, increases from the value 1/, 
a stable, nontrivial equilibrium moves in through the (0,O) equilibrium. The equi- 

librium values of p f  and p ,  are the coordinates of the points where the dotted line 
equation, (2b), meets the solid line equation, (2a). As sm increases, p f  and p, move 
along the graph of equation (ea). 

-..--s, = 1.0. The graph of equation (2b) is tangent to that of equation (ea) a t  (1,l). 
The internal equilibrium has moved to coincide with the trivial equilibrium at  (1,l). 

FIGURE 2b.-The birth of paired equilibria. h f -  - 0.9, s r: - 0.7, h, = 0.6. The allele which is 
deleterious in females, A,, has the greater dominance so i f  exactly one trivial equilibrium is 
stable it must be the one where A,  is eliminated. For all four values of s, shown in Figure 2b, 
this equilibrium is stable and that with A ,  absent is unstable. 

selection. h, = 0.7, sf = 0.5, h, = 0.3 

--‘--s, = 0.85. There is no equilibrium. The A,  gene is necessarily eliminated. 
_ s, = 0.80. The graph of equation (2b) has become tangent to that of equation (2a). 

There is a single nontrivial equilibrium, but it is unstable and A ,  will still be eliminated. 
___ s, = 0.75. The single equilibrium at s, = 0.80 has bifurcated into two, one stable and 

one unstable. If A ,  starts at high frequency, the polymorphism will be maintained. If 
A ,  starts at low frequency, it will be eliminated. 

_ _ _ _  s, = 0.70. The qualitative picture is similar to that for s, = 0.75, but the equilibria 
have moved further apart. 
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Opposing selection with arbitrary dominance 

For any given selective values, it is easy to graph equations (2a) and (2b) and 
to obtain the equilibria by observing where the graphs intersect. Figure 2a, 2b, 
and 2c show the graphs for some representative choices of the selective values. At 
a later point the degrees of dominance will be important and their role can be 
seen in Figure 2. In  it we parameterize the selective values as wfl = 1-sf, 
wf2  = l-hfsf, wf3 = 1, wml = 1, wm2 = l-ks,, and wmS = l-sm. 

As the selective values vary, the equilibrium point, or points, move about in 
the (p,, p,) space. The values of wf,, wfa, and wf3 determine the graph of equa- 
tion (ea) ; suppose we hold these values constant. If we then vary the selection 
values for the males, only the graph of equation (2b) changes and the equi- 
librium-the intersection of the graphs-moves along the fixed graph of equa- 
tion (ea). 

As w,,, wm2, and wm3 vary, the equilibrium can be lost either by moving 
through (0,O) or ( 1,l) and out of the allowable region (see Figures 2a and 2c) 
or by the graph of (2b) moving to become tangent to that of (2a) and then 
losing contact with the latter (see Figures 2b and 2c). Values where equilibria 
appear or disappear play a central role when we describe the way the system 
behaves. 

J. F. KIDWELL et al. 

11 

FIGURE 2c.-A nontrivial equilibrium moves through one of the trivial equilibria. h, = 

-.__. s, = 0.70. There is a single unstable equilibrium. The A ,  allele will be lost. The situ- 
ation is identical with one of those in Fig. 2b, except that the parameter values for *e 
two sexes have been interchanged. 

0.6, ~f = 0.8, h, = 0.9. 

--sym = 0.75.The bifurcation has taken place and the equilibria move apart. 
s, = 0.80. The unstable equilibrium where A ,  is relatively rare has moved to coin- 

cide with the trivial equilibrium at (40). The graphs of equations (2b) and (2a) are 
tangent a t  (0,O). 

s,=O.85. The unstable internal equilibrium has been lost. The equilibrium at  
(0,O) has changed from stable to unstable. The polymorphism will be presemed no 
matter what the initial gene frequencies may be. 
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ItEGIONS O F  STAB1.E EC?UIT.IBRIA 177 

T h e  graphs of equ:itions (ea)  and (2b)  always pass through the trivial equi- 
libria a t  (0.0) and (1.1). If a p i n t  of the intersection moves towards (0,O) then 
the tangent to equation (2b) and ( 0 , O )  mows closer and closer to that of equation 
(2a) and. a t  the instant when the equilibrium is lost, the two tangents coincide. 

Following OWEX (1953) we introduce 

a,. = ~ W ~ , / W ~ ~  - 1 

and 
b! = ~ w I : : / w ~ ,  - 1 

( I n  OWEN‘S notation, a I  rz C,. b, = c,.) Now equation (ea)  assumes the form 
pIlI f(pi;  a , ,  h i )>  where 

(l-b)p2 + bp 
1 + p(1-p) ( a  + b - 27- f ( p ;  a b )  = - 

T h e  slope of the tangent at  (0.0) is  b and at  (1.1 ) it is a. 

the tangent to its graph at  (0.0) is 
Wi th  the obvious notation. equation (16) is p, = /(piit; a , , , ~  b,,,),  so the slope of 

Thus the tangents i o  equations (2a) and (2b) at  ( 0 , O )  coincide when b,b,,, = 1. 
Similarly. those a t  (1 ,I ) coincide when o,uii, == 1. 

T h e  condition b,bii, = 1 is important for another reason: too. If we let 

(nS-1) rs f r(1-s) + s(1-r) 
(&I)  rs -C r(lE,s) -1.- s ( l~ - r )  -1- ( b f l )  (1-r) (l--,s) 

g(r..y;a.b) ---___ _ _ _ _ - - _ _ ~  , ,  

then the equations ( l a )  arid (1 b) are: 

pi g(p/, pi,,; 01.) 
p,Jl = 6 (piil, P/; a l l l T  O t i I )  . 

T h e  Jacobiaii matrix a t  (0,O) is: 
i - 1  1 

whose dominant eigen-value is 

Similarly the dominant eigen-value of the Jacobian matrix evaluated at (1,l) is 

(4b 1 
1 1 

a ,+l  a,,,+l 
A=- +- 
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3 78 3. F. KIDWELL et al. 

The trivial equilibrium at (0,O) is stable when (4a) is less than 1, i.e., when 
bfb, > 1. The equilibrium is unstable when brbm < 1. Similarly the curve alaln = 1 
separates parameter values where (1,l) is stable from those where it is an 
unstable equilibrium. It follows that a trivial equilibrium changes its stability 
at precisely those parameter values where a polymorphic equilibrium comes to 
coincide with the trivial equilibrium. 

It is more difficult to determine those parameter values where the graphs of 
equations (2a) and (2b) become tangent-the values where equilibria are 
created or destroyed in pairs. As OWEN (1953) shows, such values lie on the 
solution of 

where 

and 

4a3 + 4p3 - 301'p' - 6 4  + 1 = 0 

3a = arb, + bf + a, 

3p = a,b, + b, + af. 

( 5 )  

( 6 4  

(6b) 
If one parameterizes equation (5) by U = (a+p)/2, an elementary but 

= u+v and j? = u-U where U is a root of the arduous calculation shows that 
biquadratic equation 

3 (v2)'-6 ( U' +4u+l) U' -t 3 ~ ~ - - 8 ~ ~ + 6 ~ ' - - - 1  = 0. 
These algebraic formulas are too complicated to convey any biological insight 

directly, but they provide a means of delineating the regions of the parameter 
space where the system exhibits a particular biological behavior. Meaningful 
two-dimensional graphs can be obtained by fixing two parameters and numeri- 
cally finding values of U which yield solutions of equations (6a) and (6b) within 
the allowable range of two other parameters. This procedure can be applied to 
any parameterization of the selection scheme. In' what follows, dominance is 
separated from the intensity of selection by setting: 

~ 1 1  1 - sf; wiz = 1 - hfSf; ~ 1 3  

w,1= 1; w,s = 1 - Ls,;  w m s  = 1 - sm. 
1, 

Using this parameterization the trivial equilibria are unstable when: 

FIGURE 3.-Boundaries of regions of equilibria as a function of sm and sr for fixed choices of 
h, and hf. The solid line (-) is the line along which (0,O) in  the p,, p f  plane goes from 
stability to instability. The dashed line (---) divides the regions of stability and instability 
of (1,l) and the dotted line (- - - - -) is the line along which equilibria appears in pairs (i.e., the 
solution to equation 5). The regions with octagons are characterized by no polymorphic 
equilibria. Either (0,O) is unstable and (1,l) is stable or (0,U) is stable and (1,l) is unstable. 
The regions with a triangle ( A )  are characterized by a single stable polymorphic equilibrium. 
The regions with an inverted triangle ( V )  are characterized by a single unstable equilibrium. 
The region with the star ( * )  contain one unstable and one stable equilibrium, so that one 
trivial equilibrium is unstable while the other is stable. 
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180 J. F. KIDWELL et al. 

Figure 3 shows some representative graphs of the equilibrium regions in the 
s,, sf parameter space for fixed values of h, and hf. The region admitting of 
stable equilibria may include points outside the region bounded by equations 
(7a) and (7b). These are points where there is more than one equilibrium, (see, 
for  example, Figure 3b). 

An interesting special case arises when the slopes of the equations formed 
from the inequalities (7a) and (7b) coincide at s, = sf = 0. (This, of course, 
occurs when internal equilibria are simultaneously entering and exiting through 
the (0,O) , (1,l) corners in the p,, p f  plane). When this condition is satisfied, 
the dominance parameters obey the constraint h, + hf = 1, and the conditions 
for  instability of the trivial equilibria become: 

*Yf s, > -- 
1+Sf ’ 

identical to the case of additive selection. It appears that the relation h, + hf = 1 
divides the equilibrium properties of this model into two classes: (1) when 
h, + hf > 1, more than a single internal equilibrium may occur, and the region 
admitting of stable equilibria includes points outside the region bounded by 
equations (7a) and (7b) (Figures 3a, b, c, d);  and (2) when h, + hf < 1, only 
a single stable polymorphic equilibrium occurs, and consequently equations (7a) 
and (7b) bound the entire equilibrium region. Finally, when the dominance 
parameters are perfectly complementary, the region admitting of stable internal 
equilibria is identical to that for additive selection. Figure 3e presents one 
example of complementary dominance relations, whereas Figure 3f shows the 
increase in the equilibrium area over that shown in Figure 3e when k, 4- hf < 1. 

Some corollaries of the above results are: (1 ) for hf = 0 any choice of s, and sf 
to the right of the curve 

Sf  s, = -___ 

will yield a stable polymorphic equilibrium, (2) for h, = 0 all pairs of s, and sf 
above the curve 

hm (1-r) 

hfSf 
1 - hpf 

sm = -- 

produce stable polymorphic equilibria, and (3) when h, = hf = 0 all s,, sf E 

[O,l ]  give stable polymorphic equilibria. 
The biological implications of these results are that the region of polymorphic 

equilibria increases as the degree of dominance decreases. If the detrimental 
alleles are completely recessive in both sexes, then any nonzero selection in the 
two sexes will produce a balanced polymorphism. On the other hand, opposing 
selection against characters which are, on the average, dominant (h, + hf > 1) 
results in a greater complexity of equilibrium behavior. This situation is charac- 
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REGIONS O F  STABLE EQUILIBRIA 181 

terized by (1) more than a single polymorphic equilibrium and therefore a 
dependence of equilibrium achieved on starting conditions, and (2) a restriction 
of the equilibrium region towards the corner of strong selection as h, + hf goes 
from 1.0 to 2.0 (e.g., sm, sf > 0.5 for h, + hf > 1.5, Figure 3e). 

Overdominance in females and directional selection in males 

Let the female viabilities be wf, = 1-a, wfz = 1, and wf3 = I--b and assume 
that the A, allele is favored in the males with viabilities wml = 1, wmZ = I-h, 
wms = 1-s. The condition for the equilibrium with A, absent to be unstable is 

I - h  -+- > 2. This is always the case, since each term on the left is greater 1--6 1-s 
than 1. It is obvious on biological grounds that this equilibrium is necessarily 
unstable because when A, is rare it is favored in the females as well as in the 
males. 

1 

The condition for the other trivial equilibrium to be unstable is 1 + I-As 

> 2 or hs < - . Thus, the polymorphism will be maintained if, and only if, 
a 1 -a 

1 --n 

selection against male heterozygotes is not too strong. When heterosis is very 
strong (specifically if the female heteroeygote has more than twice the survival 
probability of the A,A, homozygote) , even a gene which is a dominant lethal in 
males will be maintained in the population. 

The quantitative relationship is most easily described if the selection param- 
eters are renormalized so that wfl = wml = 1. Since there is overdominance in 
females and directional selection in males, wf, = 1 < wfz ,  wf3 < wfn, and w,, > 
wm2 > wm3. The polymorphism will be maintained if and only if wf2 + wmZ > 1. 

DISCUSSION AND CONCLUSIONS 

Models of differential selection in the two sexes have been considered by a 
number of authors (BODMER 1965; HALDANE 1962; LI 1963; MBRAT 1969; OWEN 
1953). The main result of these earlier investigations has been to identify the 
number of possible equilibria associated with different patterns of selection. Thus, 
MBRAT (1969) shows that overdominance in one sex coupled with underdomi- 
nance in the other sex constitutes the only model of selection which will yield 
three equilibria. He also shows that two equilibria can arise under models of 
opposing directional selection. It is highly unlikely that patterns of selection 
during the reproductive phases of the life cycle are identical for males and 
females. Indeed, if a genotype manifests itself in the reproductive component of 
fitness, then almost certainly the effects will be sex dependent (PROUT 1971). 
Consequently, patterns of opposing selection between the sexes provide another 
opportunity for the maintenance of genetic variation in organisms with complex 
and varied life histories. 

The major result of this investigation has been to illustrate the dependence of 
equilibrium region on the average degree of dominance over the sexes. In par- 
ticular, we assert that the relation h, + hf = 1 divides models of opposing selec- 
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182 J. F. KIDWELL et al. 

tion into classes yielding only a single internal equilibrium (hlL + hf < 1) and 
classes yielding more than one internal equilibrium (h+r. + hf > 1).  A natural 
question to consider concerns the power of opposing selection in the sexes as a 
force in the maintenance of genetic variability. To consider this question we need 
some standard of comparison. The classic model of single-locus overdominance 
provides a ready comparison, and hence we need only determine the constraints 
that the average selective values over sexes must satisfy to maintain polymor- 
phism. It is readily seen from equations (4a) and (4b) that the conditions for 
instability of the trivial equilibria are: 

and 

when the parameterization is chosen relative to wm2 = wfz  = 1. It follows that a 
sufficient, but not necessary, condition for a stable polymorphism is that the 
heterozygous fitness values exceed the harmonic mean of the homozygote fitness 
values. Therefore, opposing selection in the sexes will maintain polymorphism 
over a wider range of fitness values than will the classical model of overdominant 
selection. If h, + hf > 1, then stable polymorphisms can arise which violate the 
requirement that the harmonic mean of the homozygote fitness values be less 
than that of the heterozygote, further widening the conditions under which poly- 
morphism will be maintained. I t  therefore appears that opposing selection in the 
sexes can be a potentially important mechanism in the maintenance of genetic 
variation. 

One further aspect of the model of opposing selection in the sexes which bears 
comment is its apparent similarity to the LEVENE (1953) model of multi-niche 
selection. Sufficient conditions for instability of the trivial equilibria appear to be 
identical; however, it is not immediately clear whether the wider conditions of 
PROUT (1968) are also satisfied. Furthermore, the algebraic structure of the 
general model (assuming two niches) differs in the specification of the mating 
pattern. The multi-niche model assumes random mating throughout the popula- 
tion, whereas the model of opposing selection in the sexes requires a disassortative 
pattern of mating (i.e., in the niche context, individuals from niche 1 can mate 
only with individuals from niche 2, and conversely). The effect of this restriction 
of the mating pattern is to produce greater heterozygosity in the sex model. 
Hence, direct extrapolation of the present results to the two-niche model is not 
justified. However, these results may provide some guidance in the further study 
of multi-niche selection. For example, the similarity of the trivial equilibria 
would suggest that average degree of dominance over niches may also play a role 
in describing the global equilibrium structure of multi-niche selection models. 
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