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ABSTRACT

Optimal allocation of energy to growth and reproduction was studied with a dynamic optimiza-
tion method for long-lived animals inhabiting a seasonal environment. We found that, after
maturation, it is optimal to grow either over several years (if the animals age in the sense that
their mortality increases with age) or asymptotically (if there is no ageing). Asymptotic growth
can be well approximated with Bertalanffy’s equation, even if the animals are able to grow to
infinity. This is because it is optimal to allocate an increasing proportion of surplus energy
to reproduction year after year following maturation. Age at first reproduction depends on
mortality in both favourable and unfavourable seasons, and also depends on the favourable
season length – it is optimal to mature early when mortality is high in either season or the
season is short. Size at maturity depends additionally on the parameters of the equation
describing the size-dependence of the production rate. When mortality in the unfavourable
season is high compared to mortality in the favourable season, a large part of growth is realized
after maturation. The model qualitatively explains growth patterns and life histories in fish,
reptiles, amphibians and some long-lived invertebrates which grow after maturation. To under-
stand better the diversity of life histories, field biologists working on such animals should focus
on differences in the ageing rate, favourable season length, mortality rates in both seasons and
the size-dependence of production rate. Optimization models based on the allocation principle
are promising tools to integrate these kinds of data.

Keywords: age at maturity, Bertalanffy’s growth curve, life-history evolution, optimal resource
allocation, Pontryagin Maximum Principle, seasonality.

INTRODUCTION

Most fish, reptiles, amphibians and many invertebrates grow intensively after maturation.
They differ in their ages at maturity, fractions of maximum size attained at maturity, sizes at
maturity, and also the final sizes towards which they grow (often asymptotically). These
differences may be observed between related species as well as between local populations
within a species. Animals with indeterminate growth are often long-lived and they inhabit
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seasonal environments, with the year divided into productive seasons in which growth and/
or reproduction is possible and unfavourable seasons in which physiological processes slow
down and neither growth nor reproduction occurs.

Growth in fish, amphibians and reptiles is most often described by Bertalanffy’s equation
in the form:

lt = l∞[1 − e−k(t − t0)] (1)

where t is age, lt is body length at age t, l∞ is asymptotic length, k is the growth constant
and t0 is the hypothetical age at which length equals zero (e.g. Charnov, 1993). Although
Bertalanffy’s equation usually fits the field data, Bertalanffy’s original assumption that
growth stops because anabolism is offset by catabolism is not justified. This is because
animals must have anabolism greater than catabolism to produce offspring tissues
(Kozłowski, 1996; Day and Taylor, 1997; Czarnoleski and Kozłowski, 1998). It seems
reasonable, therefore, to look to changes in resource allocation to explain slowing growth.

In comparative studies on fish, Beverton and Holt (1959) showed mortality to be posi-
tively correlated with Bertalanffy’s growth constant. Length at maturity was positively
correlated with asymptotic length from Bertalanffy’s equation; his growth constant was
negatively correlated with asymptotic length. In several papers (Charnov, 1991; Charnov and
Berrigan, 1991a,b), summarized by Charnov (1993), a model in which selection acts on age
at maturity alone was developed to explain these patterns. Bertalanffy’s growth equation is
one assumption of Charnov’s model. Roff (1983) suggested earlier that Bertalanffy’s curves
may result from increasing proportions of energy allocated to reproduction when an animal
grows older. However, without seasonality, optimization models predict that growth should
stop at maturation and reproductive allocation should be constant thereafter (Ziółko
and Kozłowski, 1983; Perrin and Sibly, 1993). Kozłowski and Uchmański (1987) built an
optimization model in which selection acts on resource allocation during the entire life
in a seasonal environment. To get an analytical solution using basic calculus, they had to
assume that mortality is constant during life, with additional age-independent mortality
occurring during unproductive seasons. Indeterminate growth was found to be optimal, and
the growth curves resulting from optimal energy allocation resembled Bertalanffy’s curves
despite the animals’ energetic potential to grow to infinity. More recently, using a similar
model with constant yearly survival, Kozłowski (1996) showed that the interspecific pat-
terns of life histories discovered by Beverton and Holt (1959) can result from optimal
allocation of resources to growth and reproduction, based on the assumption that the
parameters describing mortality, the size-dependence of production rate and the season
length differ randomly between species or local populations.

In the present paper, the Pontryagin Maximum Principle, the most advanced tool of
dynamic optimization, is applied to find the optimal schedule of energy allocation when
mortality differs seasonally and is age-dependent. This method can be used to study optimal
allocation patterns under age-specific mortality. Several numerical examples are presented
to show how such parameters as season length, maximum life span, the age-dependence
of mortality and the size-dependence of the production rate shape the life histories of
indeterminate growers living in a seasonal environment. The reasons why achieved growth
follows Bertalanffy’s equation despite the potential ability to grow linearly or even faster are
also discussed.

After introducing the model, numerical examples showing the effect of different
parameters on the optimal schedule of growth and reproduction are presented. Then we
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present the circumstances in which optimal growth curves should resemble Bertalanffy’s
curves. Finally, we discuss our results.

THE MODEL

We consider the problem of the growth–reproduction trade-off for animals living more
than 1 year in a seasonal environment (Kozłowski and Uchmański, 1987; Budilova et al.,
1995; Kozłowski, 1996). Each season is divided into two parts: a productive season of
length S when growth or reproduction can occur, and a non-productive season – winter or
drought – of length V when neither growth nor reproduction are possible. It is supposed
that the animals retain all their vegetative tissues to the next productive season. Storage
is not assumed explicitly, but we can bracket the part of the productive season necessary to
store fat for winter and treat it as a part of winter. The productive season is considered to be
uniform with respect to the adults’ performance and offspring survival; that is, offspring
produced at any time of the season are of the same quality. It is also assumed for simplicity
that the energy allocated to reproduction is released immediately.

Let qA(t) denote that part of mortality dependent on age but not dependent on season.
An additional season-dependent mortality qSV(t) occurs, taking a value qS(t) in the produc-
tive season and value qV (t) in winter. Thus total mortality is

q(t) = qA(t) + qSV(t)

and the survivorship function L(t) taking into account both causes of mortality is

L(t) = e−e0

t
q(x)dx (2)

Note that t plays two roles in our model: that of time in the strict sense of the word, and that
of age.

Let us suppose that the energy production rate of an individual at size w (in energy units)
is some known function f (w). A fraction u = u(t) of energy is allocated to reproduction at
age t, so that the rate of reproduction at this age measured in units of energy is u(t) f (w(t)).
The remaining surplus energy is allocated to growth, so that the rate of growth is:

dw

dt
= [1 − u(t)] f (w(t)), w(0) = w0

(3)

If u was known to be a function of t, the differential equation (3) could be solved for any
initial size w0; that is, w could be determined as a function of t. In this case, we could
calculate the lifetime reproductive success of an individual,

R = e0

T
u(t) f (w(t))L(t)dt (4)

where T = (N − 1)(S + V) + S is its maximum lifespan and N is the maximum number
of seasons the animals can live. R is a proper measure of fitness if the population is
at equilibrium and if density-dependence acts early in life (Kozłowski, 1993; Mylius and
Diekmann, 1995).

The problem here is to construct the control variable u as a function of t in such a way
that the functional (4) is maximized, taking into account the state equation (3), which can
be considered a constraint imposed on the dynamics of the state variable w. The problem of
finding the u(t) that maximizes (4) can be solved using the Pontryagin Maximum Principle
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(Pontryagin et al., 1962), which has already been successfully applied to the growth–
reproduction trade-off problem (Ziółko and Kozłowski, 1983; Perrin et al., 1993), but only
for non-seasonal environments. The Hamiltonian

H = u(t) f (w(t))L(t) + z(t)[1 − u(t)] f (w(t))

or, equivalently,

H = f (w(t)){u(t)[L(t) − z(t)] + z(t)} (5)

considered as a function of u should be maximized for any fixed t (and consequently for
fixed w(t)). Control variable u(t) found this way will be the solution to the optimization
problem because it maximizes the functional (4). The so-called adjoint (or co-state) variable
z in the Hamiltonian is defined by a differential equation with the right-hand side equal to
the partial derivative of H in respect to w taken with a minus sign,

dz

dt
= −f 9(w(t)){u(t)[L(t) − z(t)] + z(t)}, z(T) = 0 (6)

where

f 9(w(t)) =
df (w)

dw

From (5) we see that u can take only one of two values, 0 or 1, for any fixed t to maximize H,
because the partial derivative of H with respect to u does not depend on u. Namely, the
following condition must be fulfilled:

u(t) = 51 if L(t) > z(t)
(7)

0 if L(t) < z(t)

So the problem boils down to solving a system of two differential equations, (3) and (6),
with the corresponding boundary conditions taking into account condition (7).

If this system was solved for all possible initial conditions w0, then it would be possible to
calculate the value of z(t,w(t)) for different points (t,w) of the state space and so to build the
surface z(t,w). Then we would have two surfaces over the plane (t,w) for all w: the surface for
L(t,w) and the one for z(t,w). In this case, to find u(t,w) at any point of the state space (t,w),
it would be sufficient to compare the values of L(t,w) and z(t,w) and ascribe to u(t,w) the
value 0 or 1 given by condition (7). The problem is that the shape of z(t,w) itself depends on
u, so finding z(t,w) is not straightforward.

The problem will be solved if we build the surface z(t,w). This can be done proceeding
backwards from the terminal time T to the initial time t = 0. Let us consider an arbitrary
ith season – that is, the time period between t = (i − 1)(S + V) and t = Ti = (i − 1)(S + V) + S.
We may set u(Ti) = 1 for any size W = W(Ti), positing that this holds for some period of time
(perhaps equal to 0) before Ti, say between tW and Ti (Ziółko and Kozłowski, 1983). In this
period there is no growth (u(t) = 1), and size is constant and at its maximum (w(t) = W). The
problem of finding z for the interval tW < t < Ti is not difficult because w is constant in this
interval, and u(t) is also constant and equal to 1. Hence the differential equation (6) for z is
reduced to the form:

dz

dt
= −f 9(W)L(t), z(T) = 0
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Integrating this equation through the period from tW to Ti we obtain

z(Ti,W) − z(t,W) = −f 9(W) eTi

t
L(x)dx

or

z(t,W) = z(Ti,W) + f 9(W) eTi

t
L(x)dx (8)

and, in particular,

z(tW ,W) = z(Ti,W) + f 9(W) eTi

tW

L(x)dx (9)

According to equation (7), the following relation is true for the switching point t = tW:

z(tW,W) = L(t) (10)

Equating the right-hand sides of equations (9) and (10) we obtain an equation enabling us
to calculate tW:

z(Ti,W) + f 9(W) eTi

tW

L(x)d(x) = L(t) (11)

For some W, condition (11) is not reached before the beginning of the ith season. This
means that equation (8) can be used to calculate z(t,W) for the entire season. But for some
other W we may obtain tW > (i − 1)(S + V), and in this case the backward procedure should
be continued using equation (3) with u(t) = 0, which in this case takes the form:

dw

dt
= f (w(t)), w(tw) = W (12)

Solving this equation backwards we will find the solution for w(t) from the beginning of the
last season until t = tW. Inserting this solution into (6) with u(t) = 0, we obtain:

dz

dt
= −f 9(w(t))z(t), z(tW) = z(tW,W) (13)

Solving (13) we find z for all t from (N − 1)(S + V) until t = tW, in particular for the
beginning of the last season. Thus the surface z(t,w) can be found for the last season both
for that part of the plane (t,w) where u = 0 and for the remainder of the plane (t,w) where
u = 1.

Because neither growth nor reproduction is possible in winter, we can omit winters from
here on because z, as it follows from (6), always remains constant during winter. L(t)
becomes step-like at the end of the productive season after winter is cut out of the time axis.
L versus z would not change if winter was not cut out: although L(t) would not be step-like
at the beginning of the productive season, z(t) would remain constant during the winter,
which gives exactly the same difference between L and z at the beginning of the productive
season.

Note that, for the last season, in accordance with (6), the value of z(TN,W) in (8) and (9)
is 0 for all W, but for any earlier season i – when the end of the productive season is not TN

but Ti = (V + S)(i − 1) + S – the values of z(Ti,W) are equated to the already calculated
values of z at the beginning of the subsequent season, that is, at t = (V + S)i. As a result, the
backward procedure applied first to the Nth season gives the z values at the beginning of the
next to last season for all w. The same procedure can then be applied to this season using
z obtained at the beginning of the last season as a terminal boundary condition similar to
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condition z(TN) = 0 used before. Having found the solution for season N − 1, we can apply
the procedure to season N − 2 and so on until the first one, so that finally we build z(t,w) for
all seasons and can find the intersection of z(t,w) and survivorship L(t,w) defined by equa-
tion (2). The projection of this intersection on plane (t,w), the so-called switching curve,
divides this plane into two parts: in the first one growth is optimal (u = 0), while in the other
reproduction is optimal (u = 1) (see Fig. 1 for an example).

It is clear from the procedure for finding co-state variable z that there is no discontinuity
in z(t,w) at the boundaries between seasons after winters are cut out. At the same time, as
we have already pointed out, the survivorship function L(t,w) is discontinuous at these
boundaries. But, as follows from (7), we decide whether u = 1 or u = 0 by comparing L with
z. This means that switchings from u = 1 to u = 0 are possible at the boundaries between
seasons for some w because of a sharp decrease in L, yielding a saw-shaped switching curve
with its ‘teeth’ at the between-season boundaries. As a consequence, the optimal strategy
is characterized by alternating periods of growth and reproduction: in some years the
organism grows during the initial part of the productive season and then reproduces up to
its end, then again grows during the initial part of the next productive season and repro-
duces during its remaining part, and so on (see examples in Figs 2–5).

For this procedure, the probability of surviving to a given age L(t) must be known for the
entire life span. If, in addition, L(t) has some special forms, then it is also possible to find the
function z(t,w) analytically. Two sample cases allowing the problem to be solved analytically
will be considered next.

Fig. 1. Survival L(t,w) and co-state z(t,w) surfaces in three-dimensional space. Production rate is
expressed by 30w0.67, where w is body size in energy units. Instantaneous mortality is 0.4 per year in the
favourable season and 0.5 in the unfavourable season. Favourable season length is 50% of the year.
Life span is 5 years. For large t and w the z(t,w) surface is below the L(t,w) surface, and for smaller
t and w it is above the L(t,w) surface. Projection of the intersection of these surfaces onto the plane
(t,w) gives the switching curve. To maximize the expected lifetime energy allocation to reproduction, it
is optimal to allocate all surplus energy to growth when below the switching curve and to reproduction
above this curve.
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NUMERICAL EXAMPLES

To illustrate the procedure presented in the previous section, we show the maximum
principle solution for a case in which the production rate f (w) is given by a power function
of w:

f (w) = awb (14)

Productive season length is expressed as a fraction of a year.
Let us first consider the case, similar to the one given by Kozłowski and Uchmański

(1987), in which the mortality rate is only season-dependent and not age-dependent.
The expressions for the probability of surviving to a given age and for z(t,w) are given in
Appendix 1. The productive season length is set at 0.5. The instantaneous mortality rate in
this season is 0.4 per year (equivalent to a 0.82 probability of surviving this season) and
0.5 in the unproductive season (equivalent to a 0.78 probability of surviving this season).
The production rate equals f (w) = 30w0.67. Figure 2A shows the optimal solution for the first
12 years of an unlimited life span. The switching curve has a saw-shaped form which leads
to alternating periods of growth and reproduction. Because growth is optimal below the
switching curve and reproduction is optimal above it, the optimal strategy in this example is
to grow during three whole seasons and during the first part of the fourth season, then
reproduce up to the end of the fourth season, grow again at the beginning of the fifth season
and reproduce during the rest of it, and so on. All the teeth on the switching curve are the
same size. The optimal growth curve crosses the switching curve in the middle of the fourth

Fig. 2. The effect of life span and favourable season length on the optimal switching curve (bold line)
and growth curve (thin line). Instantaneous mortality is 0.4 per year in the favourable season and
0.5 in the unfavourable season. Favourable season length is 50% of the year for (A) to (C) and 30%
for (D). Life span is unlimited for (A) and (D), 12 years for (B) and 8 years for (C). Production rate
is the same as in Fig. 1. Winters are cut out of the time axis.
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productive season, and closer and closer to the beginnings of consecutive years. This causes
growth to slow down with age. Growth is asymptotic, however, and never stops completely
when the life span is unlimited. The length attained at maturity equals 72% of final size.

Figure 2B presents the switching and the optimal growth curves for a life span limited to
12 years, and Fig. 2C the curves for a life span of 8 years. The teeth on the switching curves
become smaller and go down towards the end of life. This is because the time horizon
shortens with age, which makes investments in growth less profitable. This change in the
shape of the switching curves has a qualitative effect on the optimal growth curves. Growth
not only slows down with age but even stops completely after several years (after 7 years for
a 12-year life span, and after 5 years for an 8-year life span).

Figure 2D shows the effect of decreasing the length of the productive season to 30% of
the year. The switching curve is now positioned lower than for a 50% productive season
length. Maturity appears earlier in the second year, which leads to smaller size at maturity.
Final size is also much lower. The proportion of maximum size attained at maturity is
higher under a shorter productive season: 61% of final size.

Figure 3 illustrates the effect of mortality on the optimal growth curves. Figure 3A is re-
peated (for reference) with the same parameters as in Fig. 2A. Mortality in the unfavourable
season is increased from 0.5 to 1.0 in Fig. 3B (which is equivalent to a 0.61 probability of
winter survival). The saw-shaped switching curve is positioned lower on the graph. Because
the peak values of the teeth define the maximum length of the organism, the growth curve
in Fig. 3B leads to a much lower maximum size compared to Fig. 3A. The lowest position
on the teeth defines the lowest possible size at maturity (in fact, this size is usually slightly
higher, because the growth curve is unlikely to cross the switching curve at the lowest
allowable position). Thus the ratio of the base to the peak of a tooth is the lower limit of the
fraction of maximum body length attained at maturity. This ratio is smaller under higher
mortality in the unfavourable season. This is reasonable: if surviving to the next season is
unlikely, investments expected to be paid back later are less profitable. This makes earlier
maturation (in the second year, not in the fourth as in Fig. 3A) and more investment in
reproduction in each succeeding year optimal.

Figure 3C shows the optimal solution when mortality in the favourable season is
increased to 0.8 (summer probability of survival equal to 0.67) and winter mortality is left
at 0.5. Such a case can be expected if the animals are safer when inactive during winter.
The switching curve is also positioned lower than in Fig. 3A, but the teeth are short and
non-linear. The low tooth base/pick means that the optimal trajectory of growth produces
small animals which attain a large proportion of maximum size before maturation. Figure
3D illustrates the case with a high mortality rate in both seasons (0.8 and 1.0, respectively).
The animals mature at a very small size and attain a very small final size if mortality is high
in both seasons.

To illustrate the effect of ageing, a particular case of the age-dependent component of
mortality given by the expression

qA = q0

T

T − t
(15)

was assumed, where T is maximum longevity. The mortality rate defined this way increases
with age and tends to infinity when t approaches T. For values of q0 very close to zero, age-
dependent mortality is very low for almost the entire life span and goes quickly to infinity
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at the end of life. When q0 increases, age-dependent mortality increases earlier in life.
Expressions for the probability of surviving to a given age and for z(t,w) are given in
Appendix 2. We assumed that age-dependent mortality is the only source of favourable-
season mortality and that the instantaneous mortality rate in the unfavourable season
equals 1.0 (which means a 0.55 probability of survival). The production rate parameters
were the same as in the previous examples.

The switching and optimal growth curves for the case with q0 close to zero are shown
in Fig. 4A. Figures 4B, 4C and 4D show the switching curves and growth curves for q0 equal
to 0.05, 0.2 and 0.5, respectively. There are two effects of increased q0: (1) the switching
curve is positioned lower from the beginning of life because mortality increases in general,
and (2) the effect of ageing makes the teeth shorter and makes them go down earlier in life.
As a result, maximum size decreases and maturation appears earlier. When q0 increases to
0.2, maturation is shifted towards the beginning of the second year, and the proportion of
maximum length attained at maturity increases from 0.52 to 0.68 (Figs 4A–C). When q0 is
increased further to 0.5, maturation is shifted to the first year; the proportion of maximum
length attained at maturity falls back to 0.52 (Fig. 4D). So size at maturity as well as the
proportion of maximum size attained at maturity may change non-linearly as functions
of q0.

The effects of season length and mortality on the switching and growth curves are shown
in Figs 2–4. Figure 5 shows the effect of the production parameters in equation (14) on the
growth curves, mainly showing when growth before maturation is expected to be linear if
size is measured as length. Figure 5A repeats Fig. 2A, with production rate f (w) = awb =
30w0.67. Note that the growth curve before maturation is linear. Figure 5B shows the optimal

Fig. 3. The effect of mortality on the optimal switching and growth curves. Instantaneous mortality
is: (A) 0.4 per year in the favourable season and 0.5 in the unfavourable season, (B) 0.4 and 1.0, (C) 0.8
and 0.5 and (D) 0.8 and 1.0. Other parameters as for Fig. 2A.



Kozłowski and Teriokhin432

solution with the exponent of production equation decreased to 0.62, and Fig. 5D with
the exponent increased to 0.72. The growth curve will always be linear before maturation
if size is expressed as w1 − b. Because length is roughly proportional to body weight to the
power 1/3, the growth curve expressed as length is linear for b = 2/3 (Fig. 5A), concave
downward for b < 2/3 (Fig. 5B) and concave upward (convex) for b > 2/3 (Fig. 5D). Age
at maturity as well as size at maturity increases with the exponent. Figure 5C shows
the optimal solution with production rate expressed by 20w0.67. Note that we obtain a
proportional dwarf of the case shown in Fig. 5A, maturing at the same age but at a much
smaller size, and having a much smaller final size.

PREDICTED VERSUS BERTALANFFY GROWTH CURVES

The growth asymptote is one of the Bertalanffy equation parameters. The growth curve
generated by our model under unlimited maximum life span (for example, see Fig. 2A) also
asymptotically approaches some limiting size w∞. In fact, this limiting size coincides with the
height of the switching curve teeth as presented in Fig. 2A. In Appendix 3, the following
formula for w∞

1 − b is obtained for season-dependent but age-independent mortality:

w∞
1 − b =

2a(1 − e−qSS)

3qS(1 − e−(qSS + qVV))
(16)

Fig. 4. The effect of age-dependent mortality on the optimal switching and growth curves. Life span is
limited to 12 years. Instantaneous mortality changes with age according to equation (15), with q0

equal to 0.0001 (A), 0.05 (B), 0.2 (C) and 0.5 (D). Higher q0 means earlier effects of ageing, but for all
values the mortality rate reaches infinity at maximum life span. Additional age-independent mortality
is assumed in the unfavourable season with an instantaneous rate of 1.0 per year. Other parameters as
for Fig. 2A.
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This expression gives the relation between parameters a, qS, qV, S, V and asymptotic size,
which is proportional to parameter a in the equation determining the production rate and
inversely proportional to summer mortality qS. If qV = 0 or V = 0 (no winters or no winter
mortality), then a and qS completely determine w∞

1 − b, but if qVV is greater than 0, then w∞
1 − b

is also proportional to the ratio of the probability of dying in summer to the probability
of dying in the entire year. That is, the longer and more severe winters are, the lower the
asymptotic size of the animals.

The next question is whether our optimal growth curve may be approximated by the
Bertalanffy curve (1) when discontinuities in growth are omitted. Here we consider only the
case with b = 2/3, when l∞ is equivalent to w∞

1 − b. It is easy to show that the subsequent annual
increments in length would experience a decreasing geometric progression (that is, the
growth curve would be Bertalanffy-type) if the seasonal fragments of the switching curves
were rectilinear. But are they? Strictly speaking they are not, because these fragments are
portions of curves bounded by the constant 2a/3qS. Nevertheless, the final parts of the
switching curves for consecutive seasons are sufficiently close to the segments of a straight
line, as can be seen in Figs 2–4 (except Fig. 3C). Thus the optimal growth curves
(not counting discontinuities) do not coincide with Bertalanffy’s growth curves but can be
well approximated by these curves for a broad range of parameters. When a is very small,
qS is very big or qV is relatively small (as in Fig. 3C), the switching curves are far from
rectilinear, and Bertalanffy’s approximation is much worse: one can observe a slower
decrease in annual length increments at the beginning of life and a faster decrease at older
ages, resulting in a fast approach to the limit on length during the few first years of life.

Fig. 5. The effect of the parameters of the production equation f (w) = awb (w = body size in energy
units) on the optimal switching and growth curves under unlimited life span. Constant a equals 30 for
(A), (B) and (D), and 20 for (C). Exponent b equals 0.67 for (A) and (C), 0.62 for (B) and 0.72 for (D).
Other parameters as for Fig. 2A.



Kozłowski and Teriokhin434

When the production rate exponent is greater than 2/3 (Fig. 5D), Bertalanffy’s curve will
approximate the optimal growth curve with size expressed by w1 − b, but for size expressed by
length the optimal growth curve before maturation grows faster than linearly.

For limited life span or mortality increasing with age, the teeth on the switching curve
decrease with age, rapidly so close to the end of life. This causes growth to stop completely
after several years without approaching the final size described by equation (16). We must
remember, however, that the growth curve will approach the one defined by Bertalanffy’s
equation at the beginning of life, and animals old enough to stop growing are usually so rare
that a deviation from Bertalanffy’s growth curve may be virtually impossible to discover.

In summary, it is not surprising that Bertalanffy’s growth curves usually approximate
real growth curves of indeterminate growers. Applying these curves is appropriate as long
as they are treated as phenomenological descriptions and one is not trying to interpret
the parameters’ meanings. Because Bertalanffy’s curves result from optimal allocation of
resources, they should not be applied as an assumption about growth in optimization
models.

DISCUSSION

The switching curve divides the plane defined by the age and size axes into two parts: it is
optimal to grow below the switching curve and to reproduce above it. The switching curve is
a straight line parallel to the age axis in an aseasonal environment if the lack of ageing is
demonstrated by mortality constant with age (e.g. Kozłowski and Wiegert, 1987; Perrin and
Sibly, 1993) or by a monotonically decreasing curve for animals whose mortality increases
with age. Thus determinate growth is optimal in an aseasonal environment because an
animal which has once crossed the switching curve has no chance of being below it in the
future. Seasonality makes switching curves non-monotonic: they decrease during favourable
seasons and increase during unfavourable seasons. This means that an animal which has
crossed the switching curve and reproduced is likely to be back below the switching curve
at the beginning of the next year, which makes growth optimal once more. Such switching
curves lead to either (1) indeterminate growth which approaches an upper limit asymp-
totically, or (2) slowing growth which stops completely after several years. Which is optimal
depends on the mortality schedule. If the life span is unlimited and mortality is age-
independent, the teeth on the switching curves are of the same shape and size during the
animal’s entire life, and asymptotic growth is optimal (see examples illustrated by Figs 2A,
2D, 3 and 5). If the life span is limited and/or mortality increases with age, the teeth move
down to a lower body size and become smaller towards the end of life. This leads to limited
final size. Final size is attained after some years of mixed growth and reproduction, unlike
in an aseasonal environment (see examples illustrated by Figs 2B, 2C and 4).

Iwasa and Cohen (1989) applied the Pontryagin Maximum Principle to consider the
optimal growth schedule of a perennial plant. Their results contradict ours: perennial plants
should not increase their size after maturation. Pugliese (1987, 1988) obtained a similar
result using a different mathematical approach. Some perennial herbs behave this way,
whereas other herbs, half-shrubs, shrubs and trees do not. It was assumed in these models
that only storage organs persist over winter and that other vegetative tissues are lost in
autumn. Here we posit that long-lived animals have all vegetative tissues permanently.
Indeed, Pugliese and Kozłowski (1990) found that there is a threshold proportion of
vegetative organs which must be permanent for indeterminate growth to be optimal. This
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proportion is dependent on winter mortality. Some perennial plants do overwinter in the
form of storage organs only, whereas others retain main roots, trunks and branches
which are not productive organs but need energy to build them. Some plants store energy,
at least partly, in roots which are functional organs as well. Thus the results are consistent:
perennial plants should or should not grow after maturation, whereas animals, retaining
most of their vegetative tissues over winter, should grow intensively after maturation unless
some constraints prevent it.

Under optimal allocation of resources, the proportion of time during which energy is
allocated to growth decreases steadily after maturation. It produces concave or S-shaped
growth curves when linear size (length) is measured and discontinuities in growth are
omitted. The production rate was described in the numerical examples by a power
function with exponent b < 1 and size measured in energy units. We do not suggest that this
equation is universal, but it is flexible enough to approximate a real production equation
for a broad range of body sizes. If b < 2/3, the growth curve for length is concave down-
ward from the beginning of life and can be approximated by Bertalanffy’s equation. If
b = 2/3, the growth curve is linear before maturation and concave after; such a curve can
also be approximated by Bertalanffy’s equation. If b > 2/3, the growth curve is convex
before maturation and concave after maturation; such a curve is better approximated by a
logistic growth curve or another curve with an inflection point. Thus the kind of curve
that fits the data on growth allows for a qualitative test of the production rate exponent,
providing that a test has been made to find which curve fits best. The general use of
Bertalanffy’s growth equation in the literature seems to show that the exponent b is
usually not greater than 2/3, but in some cases where the average sizes or individual sizes
for each age class are given, growth before maturation seems to follow a concave upward
pattern (e.g. Read, 1987; Griffiths and Kirkwood, 1995; Booth and Merron, 1996). This
suggests that the range of the production rate exponent may be quite broad, sometimes
exceeding 2/3.

Age-dependent mortality was assumed in this paper. Whereas it is better than the
assumption of constant mortality (Kozłowski and Uchmański, 1987; Kozłowski, 1996), the
size-dependence of mortality should also be taken into account. Although the optimality
condition (7) is also valid under size-dependent mortality, there are technical difficulties yet
to be solved when constructing the L and z functions for such mortality. Our guess is that
the switching curve should move up if mortality decreases with size, which makes later
maturation and larger final size optimal.

The optimal life history of animals growing after maturation can be well defined by
(1) age at maturity, (2) age at which growth stops (sometimes infinity), (3) size at maturity
and (4) final size. The ratio (3)/(4) measures the proportion of final size attained at
maturity. It is difficult to ascertain whether growth stops at some age or is continuous but
slows towards the end of life, unless there are age marks as on scales (in fish) or on shells (in
molluscs). If one only has measures of age and size, low numbers of old animals together
with intraspecific variability precludes a solution. Moreover, the old animals had their
intensive growth many years earlier when environmental conditions could have been dif-
ferent. This is another factor in the variability of size among animals. For the same reasons,
it is not possible to measure maximum size directly; instead, an asymptote from a fitted
growth curve of an assumed form (e.g. Bertalanffy’s) is usually applied (e.g. Charnov, 1993).

As shown on pp. 430–432 the switching curve depends on the length of the favourable
season, mortality in both parts of the year, ageing, and the parameters of the production
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equation. It is not easy to find all these parameters for any natural population, but knowl-
edge of life-history parameters allows us to make qualitative predictions that are useful for
comparative purposes. Optimal asymptotic final size is positively related to the production
parameters and to the ratio of the probability of dying in a favourable season to the
probability of dying throughout the entire year, and negatively related to the favourable
season mortality rate. Optimal age at maturity is independent of production constant a but
is strongly dependent on production exponent b. A large part of growth should be realized
after maturation if survival over unfavourable seasons is low, which means long unfavour-
able seasons and/or a high mortality rate during them. One must remember, however, that
optimization models provide information about selection pressures only, and not about the
outcome of selection, which also depends on the genetic structure of a population (e.g.
Maynard Smith, 1978). It is likely that natural selection does not act directly on the above
life-history features but rather on the plastic response to food conditions and mortality
indicators. This means that individuals may adjust their life histories to the conditions they
encounter. Under size-independent changes of food conditions (the constant a in produc-
tion equation (14) changes), animals should mature at the same age but different sizes,
which are, however, constant proportions of final sizes. If food conditions improve more
for larger animals (which means an increase of the exponent in the production equation),
maturation should be delayed. Any stress or other sign indicating an increase in mortality
should cause earlier maturation at a smaller size. Because the mortality risk cannot be
perceived by animals as precisely as food conditions can, we should expect much more
genetic variability for the plastic response to mortality than to productivity.

Recently, Trippel (1995) surveyed the literature on the effect of intense exploitation on
age at maturity in fish. In almost all populations which declined because of harvesting
(sometimes dramatically), age at maturity decreased, often by more than 40%. Usually size
at maturity also decreased. These changes are rapid considering the long generation time of
these fish, which suggests that the plastic phenotypic response is more important than
genetic changes. Trippel used a compensation hypothesis to explain this decrease in age of
maturation, which states that a population decline releases intraspecific competition, results
in faster growth and speeds maturation. This explanation is unsatisfactory because of the
simultaneous decline in size at maturity. The compensation hypothesis assumes that size at
maturity is more conservative than age at maturity under improved food conditions. Such a
reaction seems non-optimal according to the model presented here (compare Figs 5A and
5D), which predicts decreases in both size and age at maturity as most often observed
in nature. Compensatory improvement in food conditions may also take place: Trippel
reported cases in which age at maturity declined and size did not. It is likely, however, that
in most cases the food conditions did not improve significantly, possibly because of com-
petition with other species that matured at an earlier age and thus were better able to
tolerate intensive harvesting.

It appears that heavily harvested fish respond to the increased risk of mortality. Which
signal of increased mortality is sensed by the fish? Low density and low numbers of old
conspecifics are among the best candidates. Kasperski and Kozłowski (1993) observed
maturation at smaller size (and probably lower age) in exploited laboratory guppy
populations. Field data also support the importance of this cue in fish (e.g. Baccante and
Reid, 1988; Belk, 1995).

The proportion of final size attained at maturity is in the range 0.40–0.88 for different
groups of fish (Beverton, 1992), 0.6–0.8 for turtles (Shine and Iverson, 1995) and 0.4–0.9
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for snakes and lizards (Shine and Charnov, 1992). Age at maturity is also quite variable in
nature. The broad ranges of these life-history parameters could indicate high variability of
season length and/or mortality during favourable and unfavourable seasons. Size varies
enormously between different species of fish. This means that production rates also vary
widely. Such a wide range in size observed in nature could not be explained if only mortality
parameters varied, as basically assumed by Charnov (1993).

In this paper, the mortality rate was assumed to be age-dependent. However, Teriokhin
(1997) obtained Gompertz’s type mortality rate dynamics (as in humans and many other
animals) as a result of optimal allocation of resources to repair throughout life. Thus, life-
history modelling by the resource allocation principle seems a very robust and promising
approach.

The model presented here suggests what we should measure in nature to explain the great
variability of life histories in indeterminate growers. We should focus on the rate of ageing
(age dependence of mortality), length of growing season, mortality rate in growing seasons
and winters, and the size dependence of the production rate. Although Bertalanffy’s growth
curves fit the field data, they should not be used in modelling life-history evolution because
such curves result from optimization and cannot be treated as an assumption (Day
and Taylor, 1997; Czarnoleski and Kozłowski, 1998). Thus the growth constant from
Bertalanffy’s equation says nothing about the growth potential implied by the production
rate. This rate should be estimated by the sum of the growth and reproduction investments.
To understand life-history evolution better, it is necessary to distinguish model assumptions
and model predictions precisely. This is possible with life-history optimization models based
on the allocation principle.
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APPENDICES

1. Probability of surviving and co-state variable with unlimited life span

Assume that the age-dependent component qA = 0 and hence the corresponding survival function is

L(t) = hi − 1e−qSt (A1)

for the ith productive season, where

h = e−(qVV + qSS) (A2)

and t is the time elapsed from the beginning of the favourable season i. Assume for a while that
life span is limited to N years. Remembering that the production rate is described by (14), in this case
equation (8) for calculating z in the ith season in the region of the (t,w)-plane with u = 1 takes the form

z(t,W) = z(Ti,W) + abWb − 1hi − 1 eTi

t
e−qSxdx (A3)

which gives

z(t,W) = z(Ti,W) + abWb − 1hi − 1
1

qS

[e−qSt − e−qSTi] (A4)

This formula holds, in particular, for the last season N after replacing i with N and Ti with T = TN.
Correspondingly, equation (11) that determines the switching curve separating regions with u = 0 and
u = 1 takes the form

z(Ti,W) + abWb − 1hi − 1
1

qS

[e−qSt − e−qSTN] = hi − 1e−qSt (A5)

which can be simplified for the last season to

tW = T −
1

qS

log
1

1 − (qS/abWb − 1)
(A6)

After integrating from t to tW, equation (12) describing the dynamics of growth in the region u = 0
gives the following solution:

w(t) = [W1 − b − a(1 − b)(tW − t)]1/(1−b)

(A7)

Inserting this solution into equation (6) with u(t) = 0, we obtain

dz

dt
= −ab[W1 − b − a(1 − b)(tW − t)]−1z(t), z(tW) = z(tW,W) (A8)

Solving this equation, we obtain the expression

z(t,w(t)) = z(tW,W) 1 W

w(t)2
b

(A9)
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which can be used for determining z for all t from (i − 1)(S + V) until t = tW, in particular for the
beginning of the ith season.

Having found z for the last season, proceeding backwards we can find the solution for z and the
corresponding switching curve for the preceding season and then for still earlier ones. Because N does
not appear in (A9), we can assume any value for it, including infinity.

2. Probability of surviving and co-state variable with sample age-dependent mortality

Let us now assume that the age-dependent component of mortality equals:

qA(t) = q0

T

T − t
(B1)

The survivorship function corresponding to that component of mortality would be

LA(t) = e−et

0
q0T/(T − s)ds = 1T − t

T 2 q0T
(B2)

We assume that the summer component of mortality qS is 0. Then the probability of surviving to age t
defined by equation (2) for the ith productive season becomes

L(t) = hi − 1 1T − t

T 2 q0T
(B3)

where h is defined by equation A2. In the same way as in Appendix 1, we obtain the following
expression for z for the ith season:

z(t,W) = z(Ti,W) + abWb − 1 hi − 1 #
Ti

t
1T − x

T 2 q0T

dx (B4)

which gives the expression

z(t,W) = z(Ti,W) + abWb − 1 hi − 1
T

1 + q0T 31T − t

T 21 + q0T

− 1T − Ti

T 21 + q0T4 (B5)

This holds, in particular, for the last season N after replacing i with N and Ti with T = TN.
Correspondingly, equation (11) that determines the switching curve separating regions with u = 0

and u = 1 takes the form

z(Ti,W) + abWb − 1hi − 1
T

1 + q0T 31T − t

T 21 + q0T

− 1T − Ti

T 21 + q0T4 = hi − 1 1T − t

T 2q0T

which can be simplified for the last season to

tW = T −
1 + q0T

abWb − 1
(B6)

The equation describing the dynamics of growth in the region with u = 0 is the same as in Appendix 1.
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3. Final size with unlimited life span

For any finite life span T there exists a season i in which maximum size W is attained. Hence, for all
t between i and T, the dynamics of the co-state variable z for w(t) = W is described by the following
differential equation:

dz

dt
= −f 9(W)L(t), z(T) = 0 (C1)

from which we obtain

z(t) = −f 9(W) eT

t
L(x)dx (C2)

To calculate z(i) – that is, z at the beginning of season i + 1 – we need to calculate the integral on the
right-hand side, which is the sum of the integrals for the seasons beginning at i, i + 1, . . ., T − 1:

z(i) = f 9(W)
k̂=1

T−1

e−kqVV #k

k+S

e−qSt dt (C3)

(we assume that the time unit and the length of the year S + V coincide) or

z(i) = f 9(W)
1 − e−qSS

qS k̂=1

T−1

e−k(qSS + qVV) (C4)

Calculating the sum using the formula for the geometric progression with T tending to infinity, we
obtain the following formula for z(i) valid for unlimited life span:

z(i) = f 9(w∞)
(1 − e−qSS)e−i(qSS + qVV)

qS(1 − e−(qSS + qVV))
(C5)

We see that z(i) now does not depend on maximum life span but only on i. Taking into account that
survival at t = i is equal to

L(i) = e−i(qSS + qVV)

and that

z(i) = L(i)

at the points of the switching curve, we obtain the expression

f 9(w∞) =
qS(1 − e−(qSS + qVV))

(1 − e−qSS)
(C6)

For the case in which the production rate is given by expression (14), we obtain the following formula
for the limiting size:

w∞
1 − b =

ab(1 − e−qSS)

qS(1 − e−(qSS + qVV))
(C7)


