A short introduction to individual-based simulations on R

lab-mullon.github.io/SAF : Exercise session $0 \rightarrow RStudio Desktop installation$

Reminder

$$\boldsymbol{n}_{t+1} = L \boldsymbol{n}_t$$
$$\boldsymbol{n}_1 = L \boldsymbol{n}_0$$
$$\boldsymbol{n}_2 = L \boldsymbol{n}_1 = L^2 \boldsymbol{n}_0$$
$$\boldsymbol{n}_3 = L \boldsymbol{n}_2 = L^3 \boldsymbol{n}_0$$
$$\vdots$$
$$\boldsymbol{n}_t = L^t \boldsymbol{n}_0$$

Age a (years)	pa	ma	f _a				
0	0.25						
1	0.46	1.28	0.32				
2	0.77	2.28	0.57				
3	0.65	2.28	0.57				
4	0.67	2.28	0.57				
5	0.64	2.28	0.57				
6	0.88	2.28	0.57				
7		2.28	0.57				

	(0.32	0.57	0.57	0.57	0.57	0.57	0.57
	0.46	0	0	0	0	0	0
	0	0.77	0	0	0	0	0
L =	0	0	0.65	0	0	0	0
	0	0	0	0.67	0	0	0
	0	0	0	0	0.64	0	0
	0	0	0	0	0	0.88	0)

Individual-based simulation

- An individual-based simulation (IBS) is a **computational model/tool** that simulates the behavior and interactions of individuals within a population.
- Each individual possesses unique **features** and follows **predefined rules** governing its behavior (e.g. reproduction, movement, and interaction with other individuals and the environment).
- It helps simulate **complex evolutionary scenarios** and understand how various factors contribute to the emergence of specific traits or adaptations within a population.

Today's goal:

We model the dynamics of a population, including **reproduction**, **aging** and **death**.

For simplicity, we assume individuals cannot live for more than six years, such that the population is structured into a newborn age-class (year 0) and six reproducing age-classes (from year 1 to year 6).

The fecundity and survival probability are equal across all ages.

What is an individual?

Which features characterize an individual?

AGE

in the

range

1, 2, 3, 4, 5, 6

> possible_ages = c(1, 2, 3, 4, 5, 6)
> possible_ages
[1] 1 2 3 4 5 6
> A = sample(possible_ages, 10, replace = T)
> A
 [1] 6 6 3 2 4 6 2 1 6 4
> A[1]
[1] 6
> A[5]
[1] 4
> length(A)
[1] 10

What is an individual?

Which features characterize an individual?

AGE in the range

> Population
[1] 1 1 1 1 1 1 1 1 1

What is an individual?

Which features characterize an individual?

What does the individual do?

What is the **life-cycle** of such individuals? How does time progress?

Reproduce

What is an individual?

Which features characterize an individual?

What does the individual do?

What is the **life-cycle** of such individuals? How does time progress?

Reproduce

# Reproduction	
fec = 1	
psuv = 0.5	
<pre>no_offspring = rpois(n = 1, lambda = fec)</pre>	
<pre>no_new_n1 = rbinom(1, size = no_offspring,</pre>	prob = psuv)

What is an individual?

Which features characterize an individual?

What does the individual do?

What is the **life-cycle** of such individuals? How does time progress?

Reproduce

Reproduction fec = 1 psuv = 0.5 no_offspring = rpois(n = 1, lambda = fec) no_new_n1 = rbinom(1, size = no_offspring, prob = psuv) new_n1 = rep(1, no_new_n1)

What does the individual do?

What is the **life-cycle** of such individuals? How does time progress?

Try to survive to next year

P_{suv} = **0.5**

> runif(1) < 0.5[1] TRUE > runif(1) < 0.5[1] TRUE > runif(1) < 0.5[1] TRUE > runif(1) < 0.5[1] FALSE > runif(1) < 0.5[1] FALSE > runif(1) < 0.5[1] FALSE > runif(1) < 0.5[1] TRUE > runif(1) < 0.5[1] FALSE

What does the individual do?

What is the **life-cycle** of such individuals? How does time progress?

Try to survive to next year

Psuv = **0.5**

IND_ACT = function(age, fec, psuv){ # Reproduction no_offspring = rpois(n = 1, lambda = fec)

```
no_new_n1 = rbinom(1, size = no_offspring, prob = psuv)
new_n1 = rep(1, no_new_n1)
```

```
# Try to survive
if (runif(1) < psuv){
    # Survives and ages
    age = age + 1
} else {
    # Dies
    age = NA
}
# Returns new adults and individual
return(c(new_n1, age))</pre>
```

CTRL+Enter

> IND_ACT(age = 1, fec = 1, psuv = 0.5) Γ17 1 1 1 NA > IND_ACT(age = 1, fec = 1, psuv = 0.5) [1] 1 2 > IND_ACT(age = 1, fec = 1, $p_{suv} = 0.5$) **F17** 1 NA > IND_ACT(age = 1, fec = 1, psuv = 0.5) [1] NA > IND_ACT(age = 1, fec = 1, psuv = 0.5) [1] 2 > IND_ACT(age = 1, fec = 1, psuv = 0.5) [1] 1 2

> IND_ACT(age = 6, fec = 1, psuv = 0.5)
[1] 7


```
IND_ACT = function(age, fec, psuv){
    # Reproduction
```

```
no_offspring = rpois(n = 1, lambda = fec)
no_new_n1 = rbinom(1, size = no_offspring, prob = psuv)
new_n1 = rep(1, no_new_n1)
```

```
# Try to survive
 if (runif(1) < psuv){</pre>
    # Survives and ages
    age = age + 1
   if (age > 6){ age = NA } # Caps max age at 6 
 } else {
   # Dies
    age = NA
  }
# Returns new adults and individual
return(c(new_n1, age))
# CTRL+Enter
```

```
# This is a comment...
 2
 3 - IND_ACT = function(age, fec, psuv){
        # Reproduction
 4
        no_{offspring} = rpois(n = 1, lambda = fec)
        no_new_n1 = rbinom(1, size = no_offspring, prob = psuv)
 6
        new_n1 = rep(1, no_new_n1)
 7
 8
        # Try to survive
 9
        if (runif(1) < psuv){</pre>
10 -
11
          # Survives and ages
12
          age = age + 1
13
          if (age > 6){ age = NA } # Caps max age at 6
14 -
        } else {
15
          # Dies
16
          age = NA
17 -
        }
18
      # Returns new adults and individual
19
20
      return(c(new_n1, age))
21 • } # CTRL+Enter
22
    ### Initialization
23
    Population = rep(1, 10) # CTRL+Enter
24
25
26
```

1	# This is a comment
2	<pre>IND_ACT = function(age, fec, psuv){===} # CTRL+Enter</pre>
22 23	### Initialization
24 25	<pre>Population = rep(1, 10) # CTRL+Enter</pre>

> table(NextPopulation)
NextPopulation
1 2
50 51

> Nex	> NextPopulation																			
[1]	2 NA	12	1 2	2 2	2	1 NA	1 1	NA 1	22	22	1 NA	2 NA	1 NA	22	21	NA 1	NA NA	NA NA	12	NA NA
[39]	1 NA	1 1	2 2	2 NA	2	NA 1	NA 2	NA 2	1 1	12	21	1 1	NA NA	12	1 NA	1 NA	2 NA	NA 1	NA 2	22
[77]	NA 1	12	1 1	. NA	NA	NA 1	NA 1	NA 1	12	NA 2	NA 1	NA 1	21	22	21	NA NA	21	21	1 NA	12
[115]	21	NA NA	1 N/	NA NA	2	2 NA	2 NA	22	22	22	NA 2	1 NA	2 NA	1 NA	1 1	22	1 NA	1 2	1 NA	
> is.	na(Nex-	tPopul	ation))																
[1]	FALSE	TRUE	FALSE	FAI	LSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
[20]	TRUE	FALSE	TRUE	FAI	LSE	TRUE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	TRUE	TRUE
[39]	FALSE	TRUE	FALSE	FAI	LSE	FALSE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
[58]	FALSE	FALSE	FALSE	TI	RUE	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE
[77]	TRUE	FALSE	FALSE	FAI	LSE	FALSE	FALSE	TRUE	TRUE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE	TRUE
[96]	FALSE	TRUE	FALSE	FAI	LSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE
[115]	FALSE	FALSE	TRUE	T	RUE	FALSE	TRUE	TRUE	FALSE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE
[134]	FALSE	FALSE	TRUE	FAI	LSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	TRUE		
> !is	.na(Ne	xtPopu	latior	i)																
[1]	TRUE	FALSE	TRUE	T	RUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE
[20]	FALSE	TRUE	FALSE	T	RUE	FALSE	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE	FALSE
[39]	TRUE	FALSE	TRUE	E TI	RUE	TRUE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE
[58]	TRUE	TRUE	TRUE	FAI	LSE	FALSE	TRUE	TRUE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	TRUE	FALSE	TRUE	TRUE	TRUE
[77]	FALSE	TRUE	TRUE	E TI	RUE	TRUE	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	TRUE	TRUE	FALSE	TRUE	FALSE
[96]	TRUE	FALSE	TRUE	E TI	RUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	TRUE
[115]	TRUE	TRUE	FALSE	FAI	LSE	TRUE	FALSE	FALSE	TRUE	TRUE	FALSE	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE
[134]	TRUE	TRUE	FALSE	T	RUE	FALSE	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	TRUE	TRUE	FALSE		
> Nex	tPopulo	ation[lis.nd	(Ne	xtPc	opulat	ion)]													
[1]	212	122	211	. 1 :	12	222	121	222	111	211	122	212	211	122	111	121	121	222	112	111:
[59]	112	211	212	2 2 2	2 1	212	1 1 1	221	122	222	222	221	211	122	112	1				

```
# This is a comment...
 2
 31
    IND_ACT = function(age, fec, psuv){ # CTRL+Enter
22
23
    ### Initialization
    Population = rep(1, 100) # CTRL+Enter
24
    FinalYear = 10
25
26
27 • for (year in 1:FinalYear){
      NextPopulation = c()
28
29
      for(i in 1:length(Population)){
30 🔻
        # Append to NextPopulation all "families"
31
32
        NextPopulation = c(NextPopulation, IND_ACT(age = Population[i], fec = 1.0, psuv = 0.5))
33 -
      }
34
35
      Population = NextPopulation[!is.na(NextPopulation)]
36 • }
```

```
# This is a comment...
 1
 2
 3 ▶ IND_ACT = function(age, fec, psuv){ [ ] # CTRL+Enter
22
23
    ### Initialization
24
    Population = rep(1, 100) # CTRL+Enter
    FinalYear = 10
25
26
    PopulationSize = rep(0, FinalYear) <
27
28 • for (year in 1:FinalYear){
29
      NextPopulation = c()
30
31 🔻
      for(i in 1:length(Population)){
32
        # Append to NextPopulation all "families"
33
        NextPopulation = c(NextPopulation, IND_ACT(age = Population[i], fec = 1.0, psuv = 0.5))
34 -
      }
35
36
      Population = NextPopulation[!is.na(NextPopulation)]
37
      PopulationSize[year] = length(Population) 
38 - }
```

plot(x = 1:FinalYear, y = PopulationSize, type = "b", col = "red", pch = 16, ylim = c(0, 2*max(PopulationSize)), xlab = "Years", ylab = "Pop. size")


```
1 # This is a comment...
3 IND_ACT = function(age, fec, psuv) [ ] # CTRL+Enter
22
23 - DYN = function(n0, FinalYear, fec, psuv){ <--
     ### Initialization
24
     Population = rep(1, n0)
25
26
     PopulationSize = rep(0, FinalYear)
27
28 💌
      for (year in 1:FinalYear){
29
       NextPopulation = c()
30
       for(i in 1:length(Population)){
31 -
32
          # Append to NextPopulation all "families"
33
         NextPopulation = c(NextPopulation, IND_ACT(age = Population[i], fec = fec, psuv = psuv))
34 🔺
        }
35
36
        Population = NextPopulation[!is.na(NextPopulation)]
37
        PopulationSize[year] = length(Population)
38 -
39
40
     return(PopulationSize) 🔶
41 - }
42
   # Runs one simulation with a set of parameters
43
   sim = DYN(n0 = 100, FinalYear = 100, fec = 1.0, psuv = 0.5)
44
45
46 # Plots the output of the simulation
   plot(x = 1:100, y = sim, 
47
         type = "b"
48
         col = "red", pch <u>= 16</u>,
49
50
         ylim = c(0, 2*max(sim)), 
         xlab = "Years", ylab = "Pop. size")
51
```

```
# This is a comment...
2
   IND_ACT = function(age, fec, psuv){ []] # CTRL+Enter
3 1
22
   DYN = function(n0, FinalYear, fec, psuv){
23 🔻
      ### Initialization
24
25
      Population = rep(1, n0)
26
      PopulationSize = rep(\emptyset, FinalYear)
27
28 🕶
      for (year in 1:FinalYear){
        NextPopulation = c()
29
30
        for(i in 1:length(Population)){
31 💌
32
          # Append to NextPopulation all "families"
33
          NextPopulation = c(NextPopulation, IND_ACT(age = Population[i], fec = fec, psuv = psuv))
34 🔺
35
36
        Population = NextPopulation[!is.na(NextPopulation)]
37
        PopulationSize[year] = length(Population)
38
39
        if( length(Population) == 0) { break } # Population went extinct
        if( length(Population) > 100000 ){ break } # Population skyrocketed
40
41 🔺
42
43
      return(PopulationSize)
44 🔺
```

```
# This is a comment...
    IND_ACT = function(age, fec, psuv){ === } # CTRL+Enter
3 1
22
23 1
    DYN = function(n0, FinalYear, fec, psuv){
    # Runs one simulation with a set of parameters
47
    sim = DYN(n0 = 100, FinalYear = 100, fec = 1.5, psuv = 0.5)
48
49
    # Plots the output of the simulation
    plot(x = 1:100, y = sim,
50
51
         type = "b",
         col = "red", pch = 16,
52
         ylim = c(0, 2*max(sim)),
         xlab = "Years", ylab = "Pop. size")
```

```
# This is a comment...
 3 IND_ACT = function(age, fec, psuv) { } # CTRL+Enter
22
23 ▶ DYN = function(n0, FinalYear, fec, psuv) [ ]
46
    # Runs one simulation with a set of parameters
    sim = DYN(n0 = 100, FinalYear = 100, fec = 0.8, psuv = 0.5)
47
    # Plots the output of the simulation
49
    plot(x = 1:100, y = sim,
50
51
         type = "b",
         col = "red", pch = 16,
52
         ylim = c(0, 2*max(sim)),
54
         xlab = "Years", ylab = "Pop. size")
55
```


Now, it's up to you:

We model the dynamics of a population, including **reproduction**, **aging** and **death**.

For simplicity, we assume individuals cannot live for more than six years, such that the population is structured into a newborn age-class (year 0) and six reproducing age-classes (from year 1 to year 6).

The fecundity and survival probability differ across ages.

Age a (in years)	Fecundity m_a	Survival probability p_a
0	-	0.8
1	0.57	0.52
2	2.10	0.60
3	4.25	0.71
4	4.25	0.71
5	4.25	0.71
6	4.25	-

Table 1: Sus scrofa life-table.