Part I - Ageing

Sex, Ageing and Foraging Theory

What is ageing? aka senescence

• Gradual deterioration of function.

Trends in Cell Biology 2020 30777-791DOI: (10.1016/j.tcb.2020.07.002)

What is ageing? aka senescence

- Gradual deterioration of function.
- Decrease in survival rate and/or fecundity with age.

Trends in Cell Biology 2020 30777-791DOI: (10.1016/j.tcb.2020.07.002)

Natural variation in ageing and lifespan

Treaster S, Karasik D and Harris MP (2021 Front. Genet. 12:678073.doi: 10.3389/ fgene.2021.678073

Natural variation in ageing and lifespan

Treaster S, Karasik D and Harris MP (2021 Front. Genet. 12:678073.doi: 10.3389/ fgene.2021.678073

Homo sapiens

Gopherus agassizii (desert tortoise)

Jones et al. Nature 000, 1-5 (2013) doi:10.1038/nature12789

Why do some species age while others seem not to?

Modelling age structure

Data source: United Nations Population Division - World Population Prospects 2017; Medium Variant. The data visualization is available at OurWorldinData.org, where you find more research on how the world is changing and why.

Licensed under CC-BY by the author Max Roser.

- $n_{a,t} = n$. of individuals of age *a* at time *t*
- *p_a* = probability of survival from age *a* to *a*+1
- m_a = fecundity at age a (i.e. number of newborns)
- $f_a = p_0 m_a$ = effective fecundity at age a (i.e. number newborns that survive to age 1, with probability p_0)

 $n_{1,t+1} =$

 $n_{a+1,t+1} =$

 $n_{a+1,t+1} = p_a n_{a,t}$ for a = 1, 2, ..., A-1

Leslie Matrix

 $n_{a+1,t+1} = p_a n_{a,t}$ for a = 1, 2, ..., A-1

n_{t+}

$$(A\mathbf{v})_{j} = \sum_{i} a_{ij} v_{i}$$
$$(AB)_{ik} = \sum_{j} a_{ij} b_{jk}$$

$$\boldsymbol{n}_{t} = \begin{pmatrix} n_{1,t} \\ n_{2,t} \\ n_{3,t} \\ \vdots \\ n_{A-1,t} \\ n_{A,t} \end{pmatrix} \qquad \boldsymbol{L} = \begin{pmatrix} f_{1} & f_{2} & f_{3} & \dots & f_{A-1} & f_{A} \\ p_{1} & 0 & 0 & \dots & 0 & 0 \\ 0 & p_{2} & 0 & \dots & 0 & 0 \\ 0 & 0 & p_{3} & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & p_{A-1} & 0 \end{pmatrix}$$

$$L_1 = L n_t$$

Asymptotic behaviour

$$\boldsymbol{n}_{t+1} = L \boldsymbol{n}_t$$

$$n_1 = Ln_0$$

$$n_2 = Ln_1 = L^2n_0$$

$$n_3 = Ln_2 = L^3n_0$$

$$\vdots$$

$$n_t = L^t n_0$$

Asymptotic behaviour

$$n_{t+1} = L n_t$$

$$n_1 = L n_0$$

$$n_2 = L n_1 = L^2 n_0$$

$$n_3 = L n_2 = L^3 n_0$$

$$\vdots$$

$$n_t = L^t n_0$$

Age <i>a</i> (years)	pa	ma	
0	0.25		
1	0.46	1.28	0.
2	0.77	2.28	0.
3	0.65	2.28	0.
4	0.67	2.28	0.
5	0.64	2.28	0.
6	0.88	2.28	0.
7		2.28	0.

	0.32	0.57	0.57	0.57	0.57	0.57	0.
	0.46	0	0	0	0	0	
	0	0.77	0	0	0	0	
L =	0	0	0.65	0	0	0	
	0	0	0	0.67	0	0	
	0	0	0	0	0.64	0	
	0	0	0	0	0	0.88	

*f*a

.32 .57 .57 .57 .57

.57

.57

Exponential increase

$$n_{t+1} = L n_t$$

$$n_1 = L n_0$$

$$n_2 = L n_1 = L^2 n_0$$

$$n_3 = L n_2 = L^3 n_0$$

$$\vdots$$

$$n_t = L^t n_0$$

Age <i>a</i> (years)	pa	<i>m</i> a	
0	0.25		
1	0.46	1.28	0.
2	0.77	2.28	0.
3	0.65	2.28	0.
4	0.67	2.28	0.
5	0.64	2.28	0.
6	0.88	2.28	0.
7		2.28	0.

$$\boldsymbol{L} = \begin{pmatrix} 0.32 & 0.57$$

.57

Time

50

Extinction

$$\boldsymbol{n}_{t+1} = L \boldsymbol{n}_t$$

$$n_1 = Ln_0$$

$$n_2 = Ln_1 = L^2 n_0$$

$$n_3 = Ln_2 = L^3 n_0$$

$$\vdots$$

$$n_t = L^t n_0$$

Age <i>a</i> (years)	pa	ma	
0	.25	0.2	
1	0.46	1.28	0.2
2	0.77	2.28	0.4
3	0.65	2.28	0.4
4	0.67	2.28	0.4
5	0.64	2.28	0.4
6	0.88	2.28	0.4
7		2.28	0.4

456

Stable age distribution

$$n_{t+1} = L n_t$$

$$n_1 = L n_0$$

$$n_2 = L n_1 = L^2 n_0$$

$$n_3 = L n_2 = L^3 n_0$$

$$\vdots$$

$$n_t = L^t n_0$$

Age <i>a</i> (years)	e <i>a</i> ars) ^p a m		fa
0	0.25		
1	0.46	1.28	0.3
2	0.77	2.28	0.5
3	0.65	2.28	0.5
4	0.67	2.28	0.5
5	0.64	2.28	0.5
6	88.0	2.28	0.5
7		2.28	0.5

= proportion of individuals of age *a* at time *t*

.57

Growth rate

In the long run (large t),

$$\boldsymbol{n}_t \rightarrow c_0 \lambda^t \boldsymbol{u}$$

where:

- λ is the growth rate (and leading eigenvalue of the Leslie matrix L);
- *u* is the stable age distribution (associated right eigenvector, i.e. $L \boldsymbol{u} = \lambda \boldsymbol{u}$, with entries summing to one);
- $c_0 = \mathbf{v} \cdot \mathbf{n}_0 > 0$ is a positive constant, where \mathbf{v} is vector of reproductive values (given by $v^{T}L = \lambda v$, such that $\boldsymbol{v}^{\mathrm{T}}\boldsymbol{u} = 1$).

Reproductive values

In the long run (large *t*),

$$\boldsymbol{n}_t \rightarrow c_0 \lambda^t \boldsymbol{u}$$

where:

- λ is the growth rate (and leading eigenvalue of the Leslie matrix *L*);
- u is the stable age distribution (associated right eigenvector, i.e. $L u = \lambda u$, with entries summing to one);
- $c_0 = \mathbf{v} \cdot \mathbf{n}_0 > 0$ is a positive constant, where \mathbf{v} is vector of reproductive values (given by $\mathbf{v}^T L = \lambda \mathbf{v}$, such that $\mathbf{v}^T \mathbf{u} = 1$).

reproductive value ~ relative importance of individuals of different ages in the initial population in determining the total population size in the distant future

Explosion vs. Extinction

In the long run (large t),

$$\boldsymbol{n}_t \rightarrow c_0 \lambda^t \boldsymbol{u}$$

where:

- λ is the growth rate (and leading eigenvalue of the Leslie matrix L);
- *u* is the stable age distribution (associated right) eigenvector, i.e. $L \boldsymbol{u} = \lambda \boldsymbol{u}$, with entries summing to one);
- $c_0 = \mathbf{v} \cdot \mathbf{n}_0 > 0$ is a positive constant, where \mathbf{v} is vector of reproductive values (given by $v^{T}L = \lambda v$, such that $\boldsymbol{v}^{\mathrm{T}}\boldsymbol{u} = 1$).

Population grows exponentially at rate λ when $\lambda > 1$ (otherwise goes extinct when $\lambda < 1$).

Age distribution stabilises to *u*.

Lifetime reproductive success

= lifetime reproductive **SUCCESS**

400 200

= expected number of offspring during one's lifetime.

$l_a = p_0 p_1 p_2 \dots p_{a-1}$ = probability of survival until age a

$\lambda > 1$ if and only if R > 1

Density-dependence

- Competition for resources —> density regulation
- i.e. survival and/or reproduction decreases with population size
- Leslie matrix now depends on $n_t, L(n_t)$
- Population size converges to equilibrium where $R_0 = 1$

Effective fecundity

Convergence to demographic equilibrium $0.25 / (1 + \gamma \sum_{a=1}^{A} n_{a,t})$

- Competition for resources —> density regulation
- i.e. survival and/or reproduction decreases with population size
- Leslie matrix now depends on $n_t, L(n_t)$
- Population size converges to equilibrium where $R_0 = 1$

Age <i>a</i> (years	р _а	<i>m</i> a	fa	Number						
0	Q. Come			400				$\gamma =$	0.00	01
1	0.46	1.28	0.32	200						
2	0.77	2.28	0.57	100						
3	0.65	2.28	0.57	20 Number	40		60 60	80	100	120
4	0.67	2.28	0.57	500 - 400 -						02
5	0.64	2.28	0.57	300				$\gamma =$	0.000	03
6	0.88	2.28	0.57	200						
7		2.28	0.57		20 4	0	60	80	100	
					-					-

_ Time

Evolution in age-structured population

Consider a population monomorphic for trait x (e.g. bill size, neck length) at demographic equilibrium (under density-dependent regulation).

X

X

- Consider a population monomorphic for trait x (e.g. bill size, neck length) at demographic equilibrium (under density-dependent regulation).
- Suppose a mutant appears with alternative trait y.

- Consider a population monomorphic for trait x (e.g. bill size, neck length) at demographic equilibrium (under density-dependent regulation).
- Suppose a mutant appears with alternative trait y.

Is the mutant going to invade and replace the resident ?

- Consider a population monomorphic for trait x (e.g. bill size, neck length) at demographic equilibrium (under density-dependent regulation).
- Suppose a mutant appears with alternative trait y.
- In a large well mixed population, mutant invades only if

- Consider a population monomorphic for trait x (e.g. bill size, neck length) at demographic equilibrium (under density-dependent regulation).
- Suppose a mutant appears with alternative trait y.
- In a large well mixed population, mutant invades only if

$$R_0(y, x) = \sum_{a=1}^{A} l_a(y, x) m_a(y, x) > 1$$

i.e. if a mutant on average has more than one offspring over its lifetime.

• For quantitative traits, mutant lifetime reproductive success $R_0(y, x)$ defines a **fitness landscape**.

R(y,x) Mutant trait, y 5 2 3 4

- For quantitative traits, mutant lifetime reproductive success $R_0(y, x)$ defines a fitness landscape.
- An evolving population **climbs** this landscape to arrive to a maximum.

- For quantitative traits, mutant lifetime reproductive success $R_0(y, x)$ defines a fitness landscape.
- An evolving population **climbs** this landscape to arrive to a maximum.
- The direction of this climb is given by the selection gradient,

$$s(x) = \frac{\partial R(y, x)}{\partial y} \bigg|_{y=x}$$

- For quantitative traits, mutant lifetime reproductive success $R_0(y, x)$ defines a fitness landscape.
- An evolving population **climbs** this landscape to arrive to a maximum.
- The direction of this climb is given by the **selection gradient**,

$$s(x) = \frac{\partial R(y, x)}{\partial y} \bigg|_{y=x}$$

• A maximum x^* is such that

$$s(x^*) = 0$$

and

$$\frac{\partial s(x)}{\partial x} \bigg|_{x=x^*} < 0$$

Summary

- Dynamics of age structured population modelled via the Leslie matrix.
- The population grows when lifetime reproductive success R_0 is above 1.
- Due to competition, natural populations eventually experience density-dependent competition.
- Populations thus stabilise to a demographic equilibrium where $R_0 = 1$.
- A rare mutant y invades an x population at demographic equilibrium when mutant reproductive success $R_0(y, x) > 1$.

