
Sex, Ageing and Foraging Theory

Part I - Ageing



What is ageing?
aka senescence

• Gradual deterioration of function. 
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What is ageing?
aka senescence

• Gradual deterioration of function.


• Decrease in survival rate and/or fecundity with age. 
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Why do some 
species age while 

others seem not to? 



Modelling age structure



Dynamics of an age-structured population



Dynamics of an age-structured population

•  = n. of individuals of age a at time t 

•  = probability of survival from age a 
to a+1


•  = fecundity at age a (i.e. number of 
newborns) 

•  = effective fecundity at age 
a (i.e. number newborns that survive to 
age 1, with probability ) 
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Dynamics of an age-structured population

 

 for a = 2, 3, …, A

n1,t+1 =
A

∑
a=1

fana,t

na+1,t+1 = pana,t
0 1 2 3 A-1 A

…

p0 p1 p2 pA−1

m1
m2 m3

mA−1
mA



Dynamics of an age-structured population

 

 for a = 2, 3, …, A

n1,t+1 =
A

∑
a=1

fana,t

na+1,t+1 = pana,t
0 1 2 3 A-1 A

…

p0 p1 p2 pA−1

m1
m2 m3

mA−1
mA

p0ma



Dynamics of an age-structured population

 

 for a = 2, 3, …, A

n1,t+1 =
A

∑
a=1

fana,t

na+1,t+1 = pana,t
0 1 2 3 A-1 A

…

p0 p1 p2 pA−1

m1
m2 m3

mA−1
mA

p0ma



Dynamics of an age-structured population
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Leslie Matrix

 

 for a = 1, 2, …, A-1

n1,t+1 =
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Asymptotic behaviour

n1 = Ln0

n2 = Ln1 = L2n0

n3 = Ln2 = L3n0
⋮
nt = Ltn0

nt+1 = L nt



Asymptotic behaviour
L =
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Exponential increase
L =

0.32 0.57 0.57 0.57 0.57 0.57 0.57
0.46 0 0 0 0 0 0

0 0.77 0 0 0 0 0
0 0 0.65 0 0 0 0
0 0 0 0.67 0 0 0
0 0 0 0 0.64 0 0
0 0 0 0 0 0.88 0Age a 


(years) pa ma fa

0 0.25

1 0.46 1.28 0.32

2 0.77 2.28 0.57

3 0.65 2.28 0.57

4 0.67 2.28 0.57

5 0.64 2.28 0.57

6 0.88 2.28 0.57

7 2.28 0.57

n1 = Ln0

n2 = Ln1 = L2n0

n3 = Ln2 = L3n0
⋮
nt = Ltn0

nt+1 = L nt

n1
n2

10 20 30 40 50
Time

200

400

600

800

1000

Number



Age a 

(years) pa ma fa

0 0.25

1 0.46 1.28 0.256

2 0.77 2.28 0.456

3 0.65 2.28 0.456

4 0.67 2.28 0.456

5 0.64 2.28 0.456

6 0.88 2.28 0.456

7 2.28 0.456

Extinction

n1 = Ln0

n2 = Ln1 = L2n0

n3 = Ln2 = L3n0
⋮
nt = Ltn0

nt+1 = L nt
0.2

10 20 30 40 50
Time

50

100

150

200

250

300

Number

n1

n2



Stable age distribution

n1 = Ln0

n2 = Ln1 = L2n0

n3 = Ln2 = L3n0
⋮
nt = Ltn0

nt+1 = L nt

ca,t =
na,t

∑A
a=1 na,t

= proportion of individuals of age a at time t
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Growth rate

In the long run (large t), 





where: 


•  is the growth rate (and leading eigenvalue of the 
Leslie matrix ); 


•  is the stable age distribution (associated right 
eigenvector, i.e. , with entries summing to 
one);


•  is a positive constant, where  is 
vector of reproductive values (given by  , 
such that ).
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Reproductive values
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reproductive value ~ relative importance of 
individuals of different ages in the initial 

population in determining the total 
population size in the distant future

In the long run (large t), 
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•  is the growth rate (and leading eigenvalue of the 
Leslie matrix ); 


•  is the stable age distribution (associated right 
eigenvector, i.e. , with entries summing to 
one);


•  is a positive constant, where  is 
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such that ).
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Explosion vs. Extinction

Population grows exponentially at 
rate  when  (otherwise goes 
extinct when ).


Age distribution stabilises to .
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where: 


•  is the growth rate (and leading eigenvalue of the 
Leslie matrix ); 


•  is the stable age distribution (associated right 
eigenvector, i.e. , with entries summing to 
one);


•  is a positive constant, where  is 
vector of reproductive values (given by  , 
such that ).
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Lifetime reproductive success 

   

= lifetime reproductive 
success   


= expected number of 
offspring during one’s lifetime.

R0 =
A

∑
a=1

lama

 = probability of survival until age ala = p0p1p2…pa−1

 if and only if λ > 1 R > 1

10 20 30 40 50
Time

200

400

600

800

1000

Number

10 20 30 40 50
Time

50

100

150

200

250

300

Number

R0 < 1R0 > 1



Density-dependence
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Effective fecundity

• Competition for resources —> 
density regulation


• i.e. survival and/or reproduction 
decreases with population size


• Leslie matrix now depends on 
,  

• Population size converges to 
equilibrium where 
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Convergence to demographic equilibrium

• Competition for resources —> 
density regulation


• i.e. survival and/or reproduction 
decreases with population size


• Leslie matrix now depends on 
,  

• Population size converges to 
equilibrium where 

nt L(nt)

R0 = 1
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Evolution in age-structured 
population



• Consider a population monomorphic for trait x (e.g. 
bill size, neck length) at demographic equilibrium 
(under density-dependent regulation).

Mutant fitness and reproductive success

x

x

x

x

x

x

x

x

x

x

x



• Consider a population monomorphic for trait x (e.g. 
bill size, neck length) at demographic equilibrium 
(under density-dependent regulation).


• Suppose a mutant appears with alternative trait y.
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• Consider a population monomorphic for trait x (e.g. 
bill size, neck length) at demographic equilibrium 
(under density-dependent regulation).


• Suppose a mutant appears with alternative trait y.

Mutant fitness and reproductive success
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Is the mutant going to invade 
and replace the resident ? 



• Consider a population monomorphic for trait x (e.g. 
bill size, neck length) at demographic equilibrium 
(under density-dependent regulation).


• Suppose a mutant appears with alternative trait y. 

• In a large well mixed population, mutant invades 
only if 


R0(y, x) =
A

∑
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la(y, x)ma(y, x) > 1
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• Consider a population monomorphic for trait x (e.g. 
bill size, neck length) at demographic equilibrium 
(under density-dependent regulation).


• Suppose a mutant appears with alternative trait y. 

• In a large well mixed population, mutant invades 
only if 


i.e. if a mutant on average has more than one 
offspring over its lifetime. 

Mutant fitness and reproductive success
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Evolutionary analysis

• For quantitative traits, mutant lifetime reproductive success 
 defines a fitness landscape.


• An evolving population population climbs this landscape to 
arrive to a maximum.


• The direction of this climb is given by the selection gradient, 


• A maximum  is such that 


and 
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Summary 

• Dynamics of age structured population modelled via 
the Leslie matrix.


• The population grows when lifetime reproductive 
success  is above 1.  


• Due to competition, natural populations eventually 
experience density-dependent competition. 


• Populations thus stabilise to a demographic 
equilibrium where .


• A rare mutant y invades an x population at 
demographic equilibrium when mutant reproductive 
success .   
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