
Exercise sheet 2: Evolution of life-histories and ageing

Sex, Ageing and Foraging Theory

1 Evolution of ageing

In this part of the exercise sheet, we will analyse a simple model to illustrate antagonistic pleiotropy, a mechanism

that has been proposed to explain the evolution of ageing and that was discussed during the lecture.

1.1 Evolutionary analysis
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Figure 1: Life cycle.

We consider a monomorphic population at demographic equilibrium in which individuals can live for up to two

years (Figure 1). Newborns establish in the population with probability K(x) (which is such that the lifetime

reproductive success of a resident is one), and established individuals survive from age 1 to age 2 with a fixed

probability p. Individuals acquire a fixed amount of resources at birth, which they allocate to reproduction at age

1 and 2 in proportions x and 1 − x, respectively. Fecundities at age 1 and 2, m1(x) and m2(x), increase with

resources allocated at that age according to,

m1(x) = b(1− e−x) and m2(x) = αb(1− e−(1−x)), (1)

where b > 0 is a constant scaling the number of offspring produced, and α > 0 controls how fecund age-class 2

is compared to age 1. When α = 1, investing a resource unit to reproduction at age 1 and age 2 results in the

same change in terms of fecundity. When α > 1 (resp. α < 1), investing a resource unit to reproduction at age

2 results in a greater (resp. lower) increase in fecundity than at age 1.

a. Using the information given above, compute the lifetime reproductive success of a rare mutant expressing

an allocation strategy y in a resident population expressing x.
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b. Compute the selection gradient acting on the allocation strategy x, s(x) Hints:

d

dy

(
eu(y)

)
=

du(y)

dy
× eu(y), (2)

and e−1 = 1/e.

c. Using natural log ln(x) and its properties, prove that s(x) cancels for

x∗ =
1− ln(αp)

2
. (3)

Does this x∗ maximise or minimise R0? Support your answer with either graphical or analytical arguments.

d. Set α = 1. How does x∗ change with p? In particular, what happens when p = 1? Make a plot of x∗ as a

function of p and give a biological interpretation of your results.

e. How does changing α away from one affect your results? Explain the implications of your findings for the

evolution of ageing.

1.2 Individual-based simulations

An individual-based simulation program of the model studied above has been made available on the course website

(https://lab-mullon.github.io/SAF). Download this program and familiarise yourself with it.

a. Line 23 in the code has been left uncommented. Explain what this line does. Note that R allows for

term-by-term vector operations as shown in the code snippet below:

vec1 = c(1,2,3)

vec2 = c(2,2,2)

vec1*vec2 = c(2,4,6)

vec1+vec2 = c(3,4,5)

exp(vec1)*vec2 = c(5.44,14.78,40.17)

b. Run simulations for nt = 3000 time steps with α = 1, b = 10, u = 0.01 (mutation rate), σ = 0.01 (size of

mutations), n = 500 (population size), for p = 0.1, 0.3, 0.5, 0.7, 0.9. Store the mean of the evolving trait

x obtained over the last 1000 generations of each simulation, and make a plot showing these values as dots

together with a curve of your analytically predicted equilibrium x∗ (from question 1.1.c) as a function of p.

This may take a while depending on your computer.

c. (Optional) To go a step further, you can run several replicates (i.e. run simulations multiple times for each

value of p) and plot their average with error bars showing between-replicates standard deviation.

2 Evolution of iteroparity and semelparity

In this second part, we will be modelling the evolution of iteroparity and semelparity through the division of

resources into reproduction versus survival. We consider a population in which individuals acquire the same
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total amount of resources each year, and split it between reproduction and survival in proportions x and 1 − x,

respectively. The proportion x of resources dedicated to reproduction is called the reproductive effort. We

assume this effort remains constant throughout an individual’s life (i.e. does not change with age). When x = 1,

all resources are allocated to reproduction and the individual dies after having reproduced only once. This leads

to a semelparous life cycle in this model. By contrast, when 0 < x < 1 individuals can survive from one breeding

season to the next and thus reproduce multiple times, leading to an iteroparous life cycle.

We are interested in the evolution of reproductive effort and understanding when this evolution gives rise to a

semelparous or iteroparous life-cycle. To do this, let us consider a rare mutant with reproductive effort y in a

resident population with effort x. We assume that an individual’s fecundity at age a, ma(y) is,

ma(y) = b0y, (4)

where b0 > 0 is a constant; while its probability pa(y) of surviving from age a to a+ 1 is,

pa(y) = c (1− yγ) (5)

for a ≥ 1, where 0 ≤ c ≤ 1 is a constant that controls the strength of extrinsic mortality (i.e. the risk of dying

due to external factors, irrespective of reproductive effort y), and γ controls the intensity of the trade-off between

survival and reproduction. When an individual dies, it is replaced by a juvenile sampled among the newborns so

that the population is kept at constant size (this can be thought of as equivalent to assuming that the survival of

newborns till age 1, p0, depends negatively on population size).

2.1 Evolutionary analysis

a. Compute the probability of surviving from age zero to age a of a mutant, la(y, x).

b. Compute the mutant reproductive success, R0(y, x) (Hint: recall that
∑∞

k=0 q
k = 1

1−q when 0 < q < 1).

c. Compute the selection gradient s(x) acting on reproductive effort. Plot this gradient against x ∈ [0, 1] for

various values of γ, fixing b0 = 1 and c = 0.9. Different behaviours are observed when γ ≤ 1 and γ > 1.

Plot two examples representative of these different behaviours on the same graph, and interpret these results.

What are the consequences for the evolution of iteroparity and semelparity?

d. Focus on the case where iteroparity can evolve, and compute the reproductive effort value x∗ at which the

selection gradient cancels (i.e. where such that s(x∗) = 0). Calculate the lifespan of an individual in a

population monomorphic for this level of reproductive effort. How is it affected by different values of extrinsic

mortality (c) ? Give a biological interpretation of your results.

2.2 Individual-based simulations

The goal of this exercise is to create an individual-based simulation program that simulates the evolution of

reproductive effort using R. We strongly recommend that you read carefully through the instructions below

before starting to code, and that you use the program provided in Exercise 1.2 as a basis for your

program.
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We will simulate a population of constant size N where individuals are characterised by their reproductive effort

value x, so that the population can be depicted by a vector x = {x1, x2, ..., xN}, where xi denotes the reproductive

effort of the ith individual. At the beginning of the simulation, we initialise the population by sampling the

reproductive effort of each of the N individuals as a random number between zero and one sampled in a uniform

distribution. We then let the population evolve for tmax time steps, and record how the mean reproductive effort

in the population changes over time.

Each time step proceeds as follows. First, individuals produce newborns in proportion to their fecundity,

m(xi) = b0xi, (6)

where b0 > 0 is a constant denoting maximum fecundity. We assume that the total number of newborns produced

by the population far exceeds the size of the adult population, so that there will always be enough newborns to

replace deceased adults and keep the population at size N (i.e. we assume that N ≪ b0).

Every newborn produced has a probability u to undergo mutation, in which case its new reproductive effort value

xnew is sampled in a Gaussian distribution centred on its parent’s value xparent with standard deviation σ, truncated

such that it is kept between zero and one:

xnew =


1 if N (xparent, σ) > 1,

N (xparent, σ) if 0 ≤ N (xparent, σ) ≤ 1,

0 if N (xparent, σ) < 0,

(7)

where N (xparent, σ) denotes a random number sampled in a Gaussian distribution with mean xparent and standard

deviation σ.

Following reproduction, adults survive to the next time step with probability

p(xi) = c (1− xi
γ) , (8)

where 0 ≤ c < 1 is a constant that depicts extrinsic mortality and γ controls the intensity of the survival vs.

reproduction trade-off (as above). If an adult dies, it is replaced by a newborn sampled among those produced

that year. At the end of each time step, we record the mean reproductive effort in the population in a vector that

will be the output of our simulation program.

a. Construct a simulation program corresponding to the model described above. To help you in this task,

remember that you can re-use the general structure of the program provided in Exercise 1.2.

b. Run simulations for tmax = 2000 time steps with the following parameter values c = 0.90, b0 = 104,

u = 0.01 (mutation rate), σ = 0.01 (size of mutations), n = 500 (population size). Use various values of γ,

both above and below 1. Do not use values too close to 1 (for instance, use γ = 0.50 and γ = 2 for the

below and above 1 cases, respectively), otherwise the simulations will take a very long time to reach their

equilibrium. Do your simulation results confirm the results you obtained using evolutionary analysis?

c. Set γ = 2 and run simulations for a few different values of c. Using the simulation output, make a plot of

mean individual lifespan in the simulated population as a function of time and check whether it matches

your evolutionary analysis results.
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