
Exercise sheet 1: Age-structured populations

Sex, Ageing and Foraging Theory

In this exercise sheet, we model the dynamics of a wild boar population (Sus scrofa) using data from the literature.

For simplicity, we assume boars cannot live for more than six years, such that the population is structured into a

newborn age-class (year 0) and six reproducing age-classes (from year 1 to year 6). Age-specific fecundities and

survival are given in Table 1.

Age a (in years) Fecundity ma Survival probability pa

0 - 0.8
1 0.57 0.52
2 2.10 0.60
3 4.25 0.71
4 4.25 0.71
5 4.25 0.71
6 4.25 -

Table 1: Sus scrofa life-table.

1 Population dynamics

a. Modify the individual-based simulation program constructed during the R tutorial (the ’DYN()’ function)

to allow survival probabilities and fecundities to vary with age, as in Table 1 (Hint: you can give vectors

containing age-specific survival probabilities and fecundities as arguments to your simulation program).

b. Simulate the stochastic dynamics of the wild boar population for ten years, starting with n1,0 = 1000

individuals of age 1 (parameter n0 in the simulation program), and plot the population size as a function of

time. What do the observed dynamics imply for the lifetime reproductive success of a wild boar, R0?

c. Construct the Leslie matrix for the wild-boar population from Table 1 (recall that a Leslie matrix depends on

effective fecundities, fa). Using this matrix, compute the dynamics of the population with R (or another

programming language) over ten years, starting with n1,0 = 1000 individuals of age 1 and none in the other

age classes (Hint: matrix product is achieved by the %*% operator in R). Plot the predicted population

size as a function of time along with the simulation results. Do they match?

2 Density regulation

We now turn to a more realistic scenario where the wild boar population is density-regulated. Specifically, we

assume that the establishment probability, p0, decreases with the total population size Nt =
∑6

a=1 na,t at time t
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(Equation 1):

p0(Nt) =
c

1 + γNt
, (1)

where 0 < c ≤ 1 and γ > 0 are positive constants.

a. Modify the individual-based simulation program (from part 1) to incorporate this new assumption. Simulate

the population for a hundred years, starting with n1,0 = 1000 individuals of age 1, with c = 0.8 and

γ = 0.0005. How does population size vary over time? Why?

b. Construct the Leslie matrix associated with this new model and use it to compute the dynamics of the

population over a hundred years starting with n1,0 = 1000 individuals of age 1 in R. How is population size

predicted to vary? Does it match your simulation results (from 2a)?

3 Selection

Consider a population where individuals reproduce once and live for a single year so that there are just two age

classes, class 0 (newborns) and class 1 (adults). Adults express a trait x (e.g. beak length) that affects their

fecundity according to

m1(x) = 100 exp
[
−ω(x− 2)2

]
, (2)

where 100 is the maximum possible fecundity and ω > 0 is a parameter.

a. Make a plot of m1(x) as a function of x. What can you say about the nature of selection acting on trait

x? What does ω > 0 correspond to biologically?

We assume that individuals produce newborns and then die. The next generation is formed through density-

dependent survival of newborns so that the probability p0 that a given offspring survives depends on the x

expressed in the population at large:

p0 =
1

m1(x)
. (3)

We wish to characterise the evolution of trait x. To do so, we consider the fate of a rare mutant expressing trait

value y in a population otherwise fixed for x.

b. Compute the lifetime reproductive success of the mutant, R0(y, x), and check the lifetime reproductive

success of a resident individual is equal to 1, i.e. that R0(x, x) = 1.

c. Compute the selection gradient acting on trait x, and calculate the singular strategy x∗.
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