
Solutions to exercise sheet 1

Sex, Ageing and Foraging Theory

1 Population dynamics

a. To incorporate age-specific survival probabilities and fecundities, we modify the simulation program as

follows.

First, we modify the function IND ACT() so that it now receives the survival probability of the individual

(psuv) and the probability of survival of newborn offspring from age 0 to age 1 (p0) as separate arguments,

and uses them at the right moments. Specifically, we add parameter p0 on line 3,

IND_ACT = function(age, fec, psuv, p0){

and change the survival probability of survival of newborns in the core of the function on line 6,

no_new_n1 = rbinom(1, size = no_offspring, prob = p0)

Second, we modify the arguments specified to function DYN() on line 26, so that it now takes three

arguments in addition to initial population size n0 and time of the simulation FinalYear:

• A vector Fec that gives fecundities at age 1 to 6,

• A second vector Psuv that gives survival probabilities at age 1 to 6,

• A real number p0 between 0 and 1 that gives the survival probability of newborns from age 0 to age 1.

Thus, line 26 now reads:

DYN = function(n0, FinalYear, Fec, Psuv, p0){

Finally, we modify the loop over individuals so that the function IND ACT() now receives the age-specific

fecundity and survival probability corresponding to the individual, and the survival probability of newborns

as specified on line 3 (see above). Namely, with the age of the ith individual given by Population[i], the

fecundity of that individual is given by Fec[ Population[i] ] and its survival probability is given by Psuv[

Population[i] ], so that line 36 now reads

NextPopulation = c(NextPopulation, IND_ACT(age = Population[i], fec = Fec[

Population[i] ], psuv = Psuv[ Population[i] ], p0=p0))

b. The stochastic dynamics of the wild boar population over ten years are plotted in red in Figure 1, which

shows that the population rapidly increases in size. This implies that each wild boar more than replaces

itself over its lifetime (i.e. brings more than one offspring to maturity over its lifetime on average), so that

R0 > 1.
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Figure 1: Population dynamics of the wild boar population as a function of time. The prediction from the Leslie
matrix is shown in black, and the simulation results are shown in red.

c. The Leslie matrix is given by

L =



0.456 1.68 3.40 3.40 3.40 3.40

0.52 0 0 0 0 0

0 0.60 0 0 0 0

0 0 0.71 0 0 0

0 0 0 0.71 0 0

0 0 0 0 0.71 0


, (1)

where the first row (effective fecundities) is obtained by multiplying age-specific fecundities ma by the

survival probability of newborns, p0. By iterating the L matrix in R,

L = matrix(0, nrow = 6, ncol = 6) # This will be our Leslie matrix, for now it is

filled with zeroes.

p0=0.8 # Establishment probability

fec= c( 0.57, 2.10, 4.25, 4.25, 4.25, 4.25) # Fecundities

surv=c(0.52, 0.60, 0.71, 0.71, 0.71) # Survival probabilities

for(i in 1:ncol(L)) # For each column,

{

L[1,i] = fec[i]*p0 # Add the effective fecundity to the first row

if(i < ncol(L))

{

L[i+1,i] = surv[i] # And survival to the corresponding row

}

}

2



tmax=10 ### Number of timesteps for which we wish to predict population dynamics

n=c(1000,0,0,0,0,0) # Initial population vector

ps=rep(0,tmax) # Vector in which we will record population size

for(i in 1:tmax) # For 10 years,

{

n = L %*% n # Iterate the matrix

ps[i] = sum(n) # Compute the size of the population

}

we obtain a vector that contains predicted average population size over time. Figure 1 shows how the

prediction compares to the dynamics of the simulated population. We observe a good match between the

two, suggesting that the Leslie matrix can accurately predict the dynamics of the wild boar population in

this case.

2 Density regulation

a. To modify the simulation program, we copy and paste the function DYN() below and name this new function

DYN REG() to differentiate it from the previous one. We modify the new function as follows. First, we

modify the parameters given to DYN REG() to reflect the new assumption of our model, i.e. we replace

parameter p0 with two new parameters c and gam, so that line 93 in the solution Rscript reads

DYN_REG = function(n0, FinalYear, Fec, Psuv, c, gam){

Second, we recalculate the survival probability of newborns each year, because it depends on population

size. To do so, we add a line in the loop over years that computes the value p0 on line 101,

p0=c/(1+gam*length(Population))

Finally, we modify the newborn survival probability given to function IND ACT() in line 105,

NextPopulation = c(NextPopulation, IND_ACT(age = Population[i], fec = Fec[

Population[i] ], psuv = Psuv[ Population[i] ], p0=p0))

By running this simulation program for the parameters given in the exercise sheet, we observe that the

population first grows and then stabilises at an equilibrium size due to density-regulation. The larger the

population, the harder it becomes for newborns to survive to maturity, which limits population growth. The

simulated population is shown in red in Figure 2.

b. The Leslie matrix Lreg(Nt) associated with this new model depends on population size at time t. We obtain

it by modifying the first row of the previous matrix (eq. 1), yielding

Lreg(Nt) =



0.456

1 + γNt

1.68

1 + γNt

3.40

1 + γNt

3.40

1 + γNt

3.40

1 + γNt

3.40

1 + γNt

0.52 0 0 0 0 0

0 0.60 0 0 0 0

0 0 0.71 0 0 0

0 0 0 0.71 0 0

0 0 0 0 0.71 0


, (2)
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where

Nt =

6∑
i=1

ni,t (3)

denotes population size at time t. To iterate this matrix numerically, we have to update it with the new

population size at each generation. Using R,

# Leslie matrix

Lreg = matrix(0, nrow = 6, ncol = 6) # This will be our Leslie matrix.

c=0.8 # density-independent establishment probability

gam=0.0005 # density-dependence

tmax=100

fec= c( 0.57, 2.10, 4.25, 4.25, 4.25, 4.25) # Fecundities

surv=c(0.52, 0.60, 0.71, 0.71, 0.71, 0) # Survival probabilities

nv=c(1000,0,0,0,0,0) # Initial population

p0=c/(1+gam*sum(nv)) # Density-dependent survival probability

for(i in 1:ncol(L)) # For each column,

{

Lreg[1,i] = fec[i]*p0 # Add the effective fecundity to the first row

if(i < ncol(Lreg))

{

Lreg[i+1,i] = surv[i] # And survival to the corresponding row

}

}

results=matrix(0,ncol=6,nrow=tmax) # Matrix of results

results[1,]=nv # First row of results is the initial population

for(i in 2:tmax) # For tmax-1 generations,

{

nv = Lreg %*% nv # Iterate the matrix

results[i,]=nv # Store the results

p0=c/(1+gam*sum(nv)) # Calculate the new survival probability

Lreg[1,] = fec*p0 # Modify the matrix

}

The population size is predicted to increase and reach a plateau, much like what we observed in our simulation

(black line in Fig. 2).

3 Selection

a. Selection is stabilising around the trait value x = 2, as fecundity is maximised for this value. The parameter

ω controls the width of the peak around x = 2, that is how steeply fecundity drops when x moves away

from the optimum. Thus, it controls the strength of selection on trait x.

b. Since the mutant is rare, we may neglect its effect on density-dependent survival. Thus, its lifetime repro-

ductive success is given by

R0(y, x) =
m1(y)

m1(x)
. (4)

Setting y = x thus yields

R0(x, x) =
m1(x)

m1(x)
= 1. (5)
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Figure 2: Population size as a function of time in a simulation (in red), and as predicted by the Leslie matrix
(black line).

c. The selection gradient acting on x is given by

s(x) =
∂R0(y, x)

∂y

∣∣∣∣
y=x

= 2ω(2− x), (6)

and the singular strategy x∗ is therefore

s(x∗) = 0 ⇔ x∗ = 2. (7)
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Figure 3: Population size as a function of time
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Figure 4: Fecundity m1(x) as a function of x for ω = 0.25, 0.50, 0.75 (shades of grey).
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