Part III - Foraging theory

resources

energy

offspring

fitness

 Animal forages on multiple equivalent patches with finite amount of resources.

- Animal forages on multiple equivalent patches with finite amount of resources.
- How much time y should it spent foraging on a single patch when searching is costly?

- Animal forages on multiple equivalent patches with finite amount of resources.
- How much time y should it spent foraging on a single patch when searching is costly?
- If it stays too long, resources get depleted; too short and it does not regain energy lost from search.

• g(y): **net** energy gain from staying y in a patch

- g(y): **net** energy gain from staying y in a patch
- Rate of energy gain from search + foraging :

$$R(y) = \frac{g(y)}{y + T}$$

- g(y): **net** energy gain from staying y in a patch
- Rate of energy gain from search + foraging :

$$R(y) = \frac{g(y)}{y+T}$$

• Fitness : $w(y, x) \propto R(y)$

- g(y): **net** energy gain from staying y in a patch
- Rate of energy gain from search + foraging :

$$R(y) = \frac{g(y)}{y + T}$$

- Fitness : $w(y, x) \propto R(y)$
- Selection gradient :

$$s(x) \propto \frac{g'(x)}{x+T} - \frac{g(x)}{(x+T)^2}$$

Marginal value theorem

Optimum x^* such that $s(x^*) = 0$,

i.e., such that

$$g'(x^*) = \frac{g(x^*)}{x^* + T} = R(x^*)$$

Marginal value theorem

Optimum x^* such that $s(x^*) = 0$,

i.e., such that

$$g'(x^*) = \frac{g(x^*)}{x^* + T} = R(x^*)$$

Marginal value theorem

Optimum x^* such that $s(x^*) = 0$,

i.e., such that

$$g'(x^*) = \frac{g(x^*)}{x^* + T} = R(x^*)$$

An animal should leave when the marginal (or instantaneous) rate of energy gain $g'(x^*)$ has fallen to the rate of energy gain $R(x^*)$

Variation in relationship with uncertainty

State-dependent payoffs and uncertainty

State-dependent payoffs and uncertainty

High condition e.g., well-fed

Low condition e.g., poorly-fed

State-dependent payoffs and uncertainty

High condition e.g., well-fed

Low condition e.g., poorly-fed

State-dependent payoffs and uncertainty

High condition e.g., well-fed

State-dependent payoffs and uncertainty

High condition e.g., well-fed

Low condition e.g., poorly-fed

State-dependent payoffs and uncertainty

High condition e.g., well-fed

Low condition e.g., poorly-fed

Risk not worth taking: fitness cost of bad times outweighs fitness benefits of good times

State-dependent payoffs and uncertainty

High condition e.g., well-fed

Low condition e.g., poorly-fed

Risk not worth taking: fitness cost of bad times outweighs fitness benefits of good times

State-dependent payoffs and uncertainty

High condition e.g., well-fed

Low condition e.g., poorly-fed

Risk not worth taking: fitness cost of bad times outweighs fitness benefits of good times

Risk worth taking: fitness benefits of good times outweigh fitness cost of bad times

State-dependent payoffs and uncertainty

Risk not worth taking: fitness cost of bad times outweighs fitness benefits of good times

Risk worth taking: fitness benefits of good times outweigh fitness cost of bad times

Schaefer's model

• Biotic resource with density n, foraging function $\frac{dn}{dt} = r\left(1 - \frac{n}{K}\right)n - n_{c}h(x)n$

logistic growth

harvesting by population of n_c consumers with foraging effort x

foraging effort *x*

Schaefer's model

• Biotic resource with density n, foraging function $\frac{dn}{dt} = r\left(1 - \frac{n}{K}\right)n - n_{\rm c}h(x)n$ harvesting by population of $n_{\rm c}$ consumers with

• Equilibrium resource density $\hat{n}(x)$ such that

$$\hat{n}(x) = K \left(1 - n_c \frac{h(x)}{r} \right)$$

Schaefer's model

• Biotic resource with density n, foraging $\frac{dn}{dt} = r\left(1 - \frac{n}{K}\right)n - n_{\rm c}h(x)n$

logistic growth

harvesting by population of n_c consumers with foraging effort *x*

• Equilibrium resource density $\hat{n}(x)$ such that

$$\hat{n}(x) = K \left(1 - n_c \frac{h(x)}{r} \right)$$

of n_c consumers with

foraging effort *x*

Schaefer's model

• Biotic resource with density n, foraging function $\frac{dn}{dt} = r \left(1 - \frac{n}{K} \right) n - n_{\rm c} h(x) n$ harvesting by population

• Equilibrium resource density $\hat{n}(x)$ such that

logistic growth

$$\hat{n}(x) = K \left(1 - n_c \frac{h(x)}{r} \right)$$

MSY and over-consumption

MSY and over-consumption

MSY and over-consumption

• x_{MSY} : Foraging effort that maximises total yield =

$$x_{\text{MSY}} = \frac{1}{n_{\text{c}}} \frac{r}{2}$$

• MSY =
$$n_c h(x_{MSY}) \times \hat{n}(x_{MSY}) = \frac{Kr}{4}$$

• Resource density =
$$\hat{n}(x_{\text{MSY}}) = \frac{K}{2}$$

Max Sustainable Yield: max amount of resources that can be foraged in the long run

100

0.5

1.0

MSY and over-consumption

• x_{MSY} : Foraging effort that maximises total yield =

$$x_{\text{MSY}} = \frac{1}{n_{\text{c}}} \frac{r}{2}$$

• MSY =
$$n_c h(x_{MSY}) \times \hat{n}(x_{MSY}) = \frac{Kr}{4}$$

• Resource density =
$$\hat{n}(x_{\text{MSY}}) = \frac{K}{2}$$

• Any effort above $x_{\rm MSY}$ amounts to over-exploitation.

amount of resources that can be foraged in the long run $Y = n_c h(x) \hat{n}(x)$ 500 400 300 200

1.5

2.0

Max Sustainable Yield: max

total harvesting effort

 $n_c h(x)$

How evolution shapes foraging of biotic resources

The exploitation of renewable resources How evolution shapes foraging of biotic resources

 Well-mixed population where individuals all exploit the same resource and compete with one another.

The exploitation of renewable resources How evolution shapes foraging of biotic resources

- Well-mixed population where individuals all exploit the same resource and compete with one another.
- Fitness of a mutant with foraging effort *y* in a resident population *x*, individual yield individual cost of effort

$$w(y, x) \propto y \hat{n}(x) - c(y)$$

The exploitation of renewable resources How evolution shapes foraging of biotic resources

- Well-mixed population where individuals all exploit the same resource and compete with one another.
- Fitness of a mutant with foraging effort *y* in a resident population *x*, individual yield individual cost of effort

$$w(y, x) \propto y \hat{n}(x) - c(y)$$

- Selection gradient, $s(x) \propto \hat{n}(x) c'(x)$
- Optimal strategy x^* such that $\hat{n}(x^*) = c'(x^*)$

How evolution shapes foraging of biotic resources

- Well-mixed population where individuals all exploit the same resource and compete with one another.
- Fitness of a mutant with foraging effort *y* in a resident population *x*, individual yield individual cost of effort

$$w(y, x) \propto y \hat{n}(x) - c(y)$$

- Selection gradient, $s(x) \propto \hat{n}(x) c'(x)$
- Optimal strategy x^* such that $\hat{n}(x^*) = c'(x^*)$

•
$$x^* = x_{MSY} \frac{2Kn_c}{Kn_c + c_0 r}$$
 $h(x) = x$
 $c(x) = \frac{c_0}{2} x^2$

How evolution shapes foraging of biotic resources

- Well-mixed population where individuals all exploit the same resource and compete with one another.
- Fitness of a mutant with foraging effort *y* in a resident population *x*, individual yield individual cost of effort

$$w(y, x) \propto y \hat{n}(x) - c(y)$$

- Selection gradient, $s(x) \propto \hat{n}(x) c'(x)$
- Optimal strategy x^* such that $\hat{n}(x^*) = c'(x^*)$

•
$$x^* = x_{MSY} \frac{2Kn_c}{Kn_c + c_0 r}$$
 $h(x) = x$
 $c(x) = \frac{c_0}{2} x^2$

When cost is large,
$$c_0 \ge \frac{Kn_{\rm c}}{r}$$
 then $x^* \le x_{\rm MSY}$.

Otherwise, $x^* > x_{MSY}$.

When $c_0 = 0$, evolution leads to resource extinction.

How evolution shapes foraging of biotic resources

- Well-mixed population where individuals all exploit the same resource and compete with one another.
- Fitness of a mutant with foraging effort *y* in a resident population *x*, individual yield individual cost of effort

$$w(y, x) \propto y \hat{n}(x) - c(y)$$

- Selection gradient, $s(x) \propto \hat{n}(x) c'(x)$
- Optimal strategy x^* such that $\hat{n}(x^*) = c'(x^*)$

•
$$x^* = x_{MSY} \frac{2Kn_c}{Kn_c + c_0 r}$$
 $h(x) = x$ $c(x) = \frac{c_0}{2}x^2$

Due to competition, evolution typically leads to overexploitation and lower yield than if individuals were coordinated.

When cost is large,
$$c_0 \ge \frac{Kn_{\rm c}}{r}$$
 then $x^* \le x_{\rm MSY}$.

Otherwise, $x^* > x_{MSY}$.

When $c_0 = 0$, evolution leads to resource extinction.

Summary

- Marginal value theorem allows to understand when an organism should leave for new pastures: leave when the *marginal* rate of energy gain has fallen to the total rate of gain.
- Risky foraging behaviours can be explained from state dependent payoffs where the fitness of low condition individuals accelerates with energy.
- For biotic resources, there may exist a foraging effort such that yield is maximised and resources are maintained. Due to competition, however, natural selection tends to favour overconsumption.

