
Sex, Ageing and Foraging Theory

Part II - Sexual reproduction



Sexual reproduction is 
near universal in multi-

cellular organisms 
Very few ancestral asexual lineages
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What is sexual reproduction? 
and what are sexes?

• Production of new organisms 
by the combination of genetic 
material of two individuals.


• Sexes are defined as classes 
of individuals that are 
incompatible for sexual 
reproduction.


• Typically 2 sexes: males that 
produce many minute cheap 
gametes (sperm) and females 
that fewer produce large 
expensive ones (eggs).
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• Human man record claim: 888 
offspring Ismael the Bloodthirsty, 
emperor of Morocco (1672-1727)   

Reproduction is female limited

• Human female record claim: 69 
offspring! (First wife of 18th century 
Russian peasant Fyodor Vassilyev 
with 16 pairs of twin, 7 sets of triplets 
and 4 sets of quadruplets)
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The demographic cost of sex

• For every daughter a 
sexual female makes, an 
asexual makes two.


• Asexuals have a huge 
demographic advantage 
and should easily 
outcompete sexual.  

AsexualSexual
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The evolutionary cost of asexuality

• By not allowing their genomes to 
mix, asexuals face two potential 
problems


• Accumulation of deleterious 
mutations (especially in small 
populations) aka Muller’s ratchet


• Difficulty to combine 
advantageous mutations in 
different parts of the genomes, 
i.e. difficult to adapt

1 1

Sexual

Rapid combinations of 
advantageous genes



Summary

• Sex = production of new organisms by the 
combination of genetic information of two 
individuals.


• Males = many small gametes (sperm). Females 
= fewer larger gametes (egg).


• Population growth is female limited.


• Two-fold demographic cost of sex.


• Asexuals accumulate more deleterious 
mutations and adapt less efficiently than sexual. 

1 1
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The problem
How to overcome the twofold cost?

• Rapid demographic advantage 
versus slow evolutionary cost of 
asexuality


Assuming an asexual is initially 
equivalent to a sexual, deleterious 
mutations must accumulate 
impossibly fast or have 
unrealistically large fitness effects 
for sexuality to be maintained. 
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Can strong epistasis rescue sexuals?
• Epistasis = non-additive fitness 

effects among loci


• Allows for an abrupt decrease in 
fitness with number of deleterious 
mutations epistasis
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Resident population 
with 37 or more 

deleterious mutations 
cannot be invaded by 
an asexual with one 

extra mutation 

• Works if sexual population 
already quite loaded with 
mutations


• See exercise sheet 3
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• The environment fluctuates in 
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Fluctuating epistasis

• Environment favours specific 
allelic associations 


• The environment fluctuates in 
time, favouring different 
associations at different times


• Asexuals should lose out as 
the allelic associations of an 
asexual lineage are fixed  
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Fluctuating epistasis
But… 

• Environmental and genetic 
assumptions seem unrealistic. 


• Allowing for refugia makes it 
much more difficult to maintain 
sexual reproduction:  
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An ecological model of fluctuating epistasis

• Coevolution of host and parasites.


• Lock and key system where parasites 
can only target host with matching 
genotype.


• Selection on parasites to match most 
common host, selection on host to 
evade most common parasite.


• Creates fluctuating epistasis in host.
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epistasis, favouring sexual reproduction. 
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An ecological model of fluctuating epistasis
But… 
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Summary

• Maintenance of sex is not straightforward: rapid 
demographic advantage versus slow evolutionary cost 
of asexuality. 


• Strong epistasis can mitigate demographic advantage 
as fitness decreases rapidly with new mutations. 


• Fluctuating epistasis also disadvantages asexuals who 
cannot easily create novel allelic combinations.   


• Ecological interactions can lead to red queen dynamics 
and fluctuating epistasis, favouring sexual reproduction. 


• But existing models do not fully answer the question.
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