Part I - Ageing

What is ageing? aka senescence

• Gradual deterioration of function.

Trends in Cell Biology 2020 30777-791DOI: (10.1016/j.tcb.2020.07.002)

What is ageing?

aka senescence

- Gradual deterioration of function.
- Decrease in survival rate and/or fecundity with age.

Natural variation in ageing and lifespan

Treaster S, Karasik D and Harris MP (2021 Front. Genet. 12:678073.doi: 10.3389/fgene.2021.678073

Natural variation in ageing

and lifespan

Treaster S, Karasik D and Harris MP (2021 Front. Genet. 12:678073.doi: 10.3389/ fgene.2021.678073

Modelling age structure

- $n_{a,t} = n$. of individuals of age a at time t
- p_a = probability of survival from age a to a+1
- m_a = fecundity at age a (i.e. number of newborns)
- $f_a = p_0 m_a$ = effective fecundity at age a (i.e. number newborns that survive to age 1, with probability p_0)

$$n_{1,t+1} =$$

$$n_{1,t+1} = \sum_{a=1}^{P_0 m_a} f_a n_{a,t}$$

$$n_{a+1,t+1} =$$

$$n_{1,t+1} = \sum_{a=1}^{P_0 m_a} f_a n_{a,t}$$

$$n_{a+1,t+1} = p_a n_{a,t}$$
 for $a = 1, 2, ..., A-1$

Leslie Matrix

$$(A\mathbf{v})_{j} = \sum_{i} a_{ij} v_{i}$$

$$(AB)_{ik} = \sum_{i} a_{ij} b_{jk}$$

$$n_{1,t+1} = \sum_{a=1}^{P_0 m_a} f_a n_{a,t}$$

$$n_{a+1,t+1} = p_a n_{a,t}$$
 for $a = 1, 2, ..., A-7$

$$egin{aligned} n_{1,t} \\ n_{2,t} \\ n_{3,t} \\ \vdots \\ n_{A-1,t} \\ n_{A,t} \end{aligned}$$

$$n_{1,t+1} = \sum_{a=1}^{A} f_a n_{a,t}$$

$$n_{t} = \begin{pmatrix} n_{1,t} \\ n_{2,t} \\ n_{3,t} \\ \vdots \\ n_{A-1,t} \\ n_{A,t} \end{pmatrix}$$

$$L = \begin{pmatrix} f_1 & f_2 & f_3 & \dots & f_{A-1} & f_A \\ p_1 & 0 & 0 & \dots & 0 & 0 \\ 0 & p_2 & 0 & \dots & 0 & 0 \\ 0 & 0 & p_3 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & p_{A-1} & 0 \end{pmatrix}$$

$$n_{t+1} = L n_t$$

Asymptotic behaviour

$$n_{t+1} = L n_t$$

$$n_1 = Ln_0
 n_2 = Ln_1 = L^2n_0
 n_3 = Ln_2 = L^3n_0
 \vdots
 n_t = L^tn_0$$

Asymptotic behaviour

$$n_{t+1} = L n_t$$

$$\mathbf{n}_1 = L\mathbf{n}_0$$
 $\mathbf{n}_2 = L\mathbf{n}_1 = L^2\mathbf{n}_0$
 $\mathbf{n}_3 = L\mathbf{n}_2 = L^3\mathbf{n}_0$
 \vdots
 $\mathbf{n}_t = L^t\mathbf{n}_0$

Age <i>a</i> (years)	рa	m a	f a
0	0.25		
1	0.46	1.28	0.32
2	0.77	2.28	0.57
3	0.65	2.28	0.57
4	0.67	2.28	0.57
5	0.64	2.28	0.57
6	0.88	2.28	0.57
7		2.28	0.57

$$\boldsymbol{L} = \begin{pmatrix} 0.32 & 0.57 & 0.57 & 0.57 & 0.57 & 0.57 \\ 0.46 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0.77 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0.65 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.67 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.64 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0.88 & 0 \end{pmatrix}$$

Exponential increase

$$n_{t+1} = L n_t$$

$$n_1 = Ln_0$$

 $n_2 = Ln_1 = L^2n_0$
 $n_3 = Ln_2 = L^3n_0$
 \vdots
 $n_t = L^tn_0$

Age <i>a</i> (years)	рa	m a	f a
0	0.25		
1	0.46	1.28	0.32
2	0.77	2.28	0.57
3	0.65	2.28	0.57
4	0.67	2.28	0.57
5	0.64	2.28	0.57
6	0.88	2.28	0.57
7		2.28	0.57

$$\boldsymbol{L} = \begin{pmatrix} 0.32 & 0.57 & 0.57 & 0.57 & 0.57 & 0.57 \\ 0.46 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0.77 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0.65 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.67 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.64 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0.88 & 0 \end{pmatrix}$$

Extinction

$$n_{t+1} = L n_t$$

$$n_1 = Ln_0$$

 $n_2 = Ln_1 = L^2n_0$
 $n_3 = Ln_2 = L^3n_0$
 \vdots
 $n_t = L^tn_0$

Age <i>a</i> (years)	рa	<i>m</i> a	<i>f</i> a
0	C.25	0.2	
1	0.46	1.28	0.256
2	0.77	2.28	0.456
3	0.65	2.28	0.456
4	0.67	2.28	0.456
5	0.64	2.28	0.456
6	0.88	2.28	0.456
7		2.28	0.456

Stable age distribution

$$n_{t+1} = L n_t$$

$$\mathbf{n}_1 = L\mathbf{n}_0$$
 $\mathbf{n}_2 = L\mathbf{n}_1 = L^2\mathbf{n}_0$
 $\mathbf{n}_3 = L\mathbf{n}_2 = L^3\mathbf{n}_0$
 \vdots
 $\mathbf{n}_t = L^t\mathbf{n}_0$

Age <i>a</i> (years)	рa	<i>m</i> a	<i>f</i> a
0	0.25		
1	0.46	1.28	0.32
2	0.77	2.28	0.57
3	0.65	2.28	0.57
4	0.67	2.28	0.57
5	0.64	2.28	0.57
6	0.88	2.28	0.57
7		2.28	0.57

$$c_{a,t} = \frac{n_{a,t}}{\sum_{a=1}^{A} n_{a,t}}$$

= proportion of individuals of age a at time t

Growth rate

In the long run (large t),

$$\boldsymbol{n}_t \rightarrow c_0 \lambda^t \boldsymbol{u}$$

where:

- λ is the growth rate (and leading eigenvalue of the Leslie matrix L);
- u is the stable age distribution (associated right eigenvector, i.e. $Lu = \lambda u$, with entries summing to one);
- $c_0 = \mathbf{v} \cdot \mathbf{n}_0 > 0$ is a positive constant, where \mathbf{v} is vector of reproductive values (given by $\mathbf{v}^T L = \lambda \mathbf{v}$, such that $\mathbf{v}^T \mathbf{u} = 1$).

Reproductive values

In the long run (large t),

$$n_t \to c_0 \lambda^t u$$

where:

- λ is the growth rate (and leading eigenvalue of the Leslie matrix L);
- u is the stable age distribution (associated right eigenvector, i.e. $Lu = \lambda u$, with entries summing to one);
- $c_0 = \mathbf{v} \cdot \mathbf{n}_0 > 0$ is a positive constant, where \mathbf{v} is vector of reproductive values (given by $\mathbf{v}^T L = \lambda \mathbf{v}$, such that $\mathbf{v}^T \mathbf{u} = 1$).

reproductive value ~ relative importance of individuals of different ages in the initial population in determining the total population size in the distant future

Explosion vs. Extinction

In the long run (large t),

$$n_t \to c_0 \lambda^t u$$

where:

- λ is the growth rate (and leading eigenvalue of the Leslie matrix L);
- u is the stable age distribution (associated right eigenvector, i.e. $Lu = \lambda u$, with entries summing to one);
- $c_0 = \mathbf{v} \cdot \mathbf{n}_0 > 0$ is a positive constant, where \mathbf{v} is vector of reproductive values (given by $\mathbf{v}^T L = \lambda \mathbf{v}$, such that $\mathbf{v}^T \mathbf{u} = 1$).

Population grows exponentially at rate λ when $\lambda > 1$ (otherwise goes extinct when $\lambda < 1$).

Age distribution stabilises to u.

Lifetime reproductive success

$$R_0 = \sum_{a=1}^{A} l_a m_a$$

= lifetime reproductive success

= expected number of offspring during one's lifetime.

 $\lambda > 1$ if and only if R > 1

Density-dependence

- Competition for resources —> density regulation
- i.e. survival and/or reproduction decreases with population size
- Leslie matrix now depends on n_t , $L(n_t)$
- Population size converges to equilibrium where $R_0=1$

Convergence to demographic equilibrium

- Competition for resources —> density regulation
- i.e. survival and/or reproduction decreases with population size
- Leslie matrix now depends on n_t , $L(n_t)$
- Population size converges to equilibrium where $R_0=1$

Evolution in age-structured population

• Consider a population monomorphic for trait *x* (e.g. bill size, neck length) at demographic equilibrium (under density-dependent regulation).

- Consider a population monomorphic for trait *x* (e.g. bill size, neck length) at demographic equilibrium (under density-dependent regulation).
- Suppose a mutant appears with alternative trait y.

- Consider a population monomorphic for trait x (e.g. bill size, neck length) at demographic equilibrium (under density-dependent regulation).
- Suppose a mutant appears with alternative trait y.

Is the mutant going to invade and replace the resident?

- Consider a population monomorphic for trait *x* (e.g. bill size, neck length) at demographic equilibrium (under density-dependent regulation).
- Suppose a mutant appears with alternative trait y.
- In a large well mixed population, mutant invades only if

- Consider a population monomorphic for trait x (e.g. bill size, neck length) at demographic equilibrium (under density-dependent regulation).
- Suppose a mutant appears with alternative trait y.
- In a large well mixed population, mutant invades only if

$$R_0(y, x) = \sum_{a=1}^{A} l_a(y, x) m_a(y, x) > 1$$

i.e. if a mutant on average has more than one offspring over its lifetime.

• For quantitative traits, mutant lifetime reproductive success $R_0(y,x)$ defines a **fitness landscape**.

- For quantitative traits, mutant lifetime reproductive success $R_0(y,x)$ defines a **fitness landscape**.
- An evolving population climbs this landscape to arrive to a maximum.

- For quantitative traits, mutant lifetime reproductive success $R_0(y,x)$ defines a **fitness landscape**.
- An evolving population climbs this landscape to arrive to a maximum.
- The direction of this climb is given by the selection gradient,

$$s(x) = \frac{\partial R(y, x)}{\partial y} \bigg|_{y=x}$$

- For quantitative traits, mutant lifetime reproductive success $R_0(y,x)$ defines a **fitness landscape**.
- An evolving population climbs this landscape to arrive to a maximum.
- The direction of this climb is given by the selection gradient,

$$s(x) = \frac{\partial R(y, x)}{\partial y} \bigg|_{y=x}$$

• A maximum x^* is such that

$$s(x^*) = 0$$

and

$$\left. \frac{\partial s(x)}{\partial x} \right|_{x=x^*} < 0$$

Summary

- Dynamics of age structured population modelled via the Leslie matrix.
- The population grows when lifetime reproductive success R_0 is above 1.
- Due to competition, natural populations eventually experience density-dependent competition.
- Populations thus stabilise to a demographic equilibrium where $R_0=1$.
- A rare mutant y invades an x population at demographic equilibrium when mutant reproductive success $R_0(y,x) > 1$.

$$R_0 = \sum_{a=1}^{A} l_a m_a$$