1.1

Solutions to exercise sheet 2

Sex, Ageing and Foraging Theory

Evolution of iteroparity and semelparity

Evolutionary analysis

The probability, I, (y, x), that a mutant y (in a resident population expressing reproductive effort x) survives

up to age a > 1 is given by

la(y,7) = K(2)pa(y)"™" = K(z) (e(1 —y7))" ", (1)

where K (x) is the probability po that an individual survives from age 0 to 1 and is such that the resident
population is at demographic equilibrium (i.e. such that Ry(z,x) = 1).

The lifetime reproductive success of a mutant y (in a resident population expressing reproductive effort x)
is by definition,
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Because Ry(x,z) = 1, we must have
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Substituting eq. (3) into (2), we get,
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Using eq. (4) and basic calculus, the selection gradient is
_ ORo(y, ) 1 A
slw) = oy Sz 1—c(l—av) (5)

y=c

By plotting eq. (5) against x, we see that when v < 1, the selection gradient s(x) is always positive. This
means that evolution will always favour z* = 1 (semelparity) in this case. By contrast, the selection gradient

can switch from positive to negative when > 1, so that iteroparity can be favoured (see Figure 1).

This is because ~y controls the strength of trade-off between reproduction and survival (to see this, you can
plot m, and p, in a monomorphic population against x for different values of v). When ~ is small, investing
a few resources into survival causes a sharp drop in fecundity. There is therefore no incentive to do so and



thus selection favours semelparity. When + is large, investing a few resources into survival entails only a
small cost in fecundity. It therefore makes sense to attempt at surviving for another season and reproduce,
leading to the evolution of iteroparity.

. From eq. (5), solving the equilibrium condition, s(z*) = 0 for z* gives
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for the optimal reproductive effort. Such optimal strategy decreases with extrinsic mortality parameter c.

This is because if there is a high chance of dying between reproductive episodes, then it is more advantageous
to reproduce fewer times.

The lifespan Lo(y, x) of a mutant y (in a resident population expressing reproductive effort ) is defined as
the expected age of death of such a mutant. By definition, this is given mathematically by,

Lo(y,x) =Y ax la(y, x)(1 = pa(y, z)), (7)

where 1, (y,z)(1 — pa(y,x)) is the probability to survive up to age a and then die at that age (i.e. not
survive to age a + 1).

Using definition eq. (7) for our model and for a population monomorphic for z* (i.e. z =y = z*), we

obtain, .

Substituting for «* (given by eq. 6) into eq. (8) reveals that lifespan decreases as ¢ decreases. This is
because higher extrinsic mortality ¢ favours the evolution of higher reproductive efforts (eq. 6) and thus
leads to reduced survival from one year to the next, which in turn means shorter lifespans.

Note: The definition of lifespan eq. (7) includes survival from birth to establishment (i.e. from age 0 to
1). In other words, this equation answers the question: what is the expected age that a newborn will die
at? But in many species, the probability that an offspring dies before reaching age 1 (or another relevant
stage) is extremely high. Think of species that produce offspring in extreme numbers where each offspring
has a minute chance of survival (e.g. fish that release millions of eggs in the water). In these species,
measuring lifespan conditional on successful establishment is more biologically meaningful. For instance, if
establishment is at age 1, conditional lifespan would be
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where [, (y,x)/l1(y, x) gives the probability of reaching age a given survival till age 1. For our model, this
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would lead to

Li(y, =) = (10)

which would be most relevant where fecundity by is high.
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Figure 1: Selection gradient as a function of reproductive effort for values of v above and below 1 (bg = 1 and
c=0.9).

1.2 Individual based simulations

a. The 'if’ statement on line 24 tests whether the individual survives to the next time step or not. If it survives
nothing happens, and if it dies it is replaced by a juvenile. On line 26, the function 'sample’ selects a parent
for the offspring to be established and replace the dead individual. Each parent has a probability of being
chosen proportional to its fecundity.

b. Simulations should match analytical predictions perfectly, unless v is taken close to 1, at which point the
simulations take a longer time to reach equilibrium because selection becomes very weak. To visualise this,
you can plot the selection gradient s(z) for v = 1 and notice that it becomes very flat as  approaches 1.

c. Using the average reproductive effort in the simulated population at each timestep, we can compute the
corresponding lifespan Lg from eq. (8). The simulation results match our evolutionary analysis (see Figure
2).
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Figure 2: Lifespan as a function of time for by = 1, v = 2 and ¢ = 0.9. The black dots depict the simulation
results while the red line depicts the mathematical prediction.

2 Evolution of ageing

2.1 Evolutionary analysis

a. According to the model, the lifetime reproductive success of a rare mutant expressing an allocation strategy
y in a resident population expressing x is,

Ro(y,x) = K(x) [b(l —e Y) +pxab(l-— 67(173/))} . (11)

Using the fact that Ro(z,x) = 1 by definition, we have
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Plugging this back into Ro(y,x), we obtain,
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b. Using the hints given in the exercise sheet and basic calculus, one finds that the selection gradient reads as
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c. The problem of finding =* such that s(z*) = 0 reduces to solving
e = ape”(1777) (15)

for x*. Applying In(-) to both sides of this equation (which we can do as both sides are positive) yields
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This can be rearranged to find
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To show that z* maximises Ry analytically, we take the derivative of s(z) with respect to z, evaluate this
derivative at x*, and check that it is negative. Doing this we get,
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which is indeed always negative.

Alternatively, one can plot s(z) as a function of = and check that it is positive when approaching z* from
below and negative when approaching it from above (Figure 3), such that selection will push the trait value

towards x*.
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Figure 3: Selection gradient as a function of trait value.



d. Looking at eq. (17) with a = 1, we see that the optimal allocation strategy «* decreases when p increases,
and that in particular z* = 0.5 when p = 1 (see black line in fig. 4). In other words, as the probability p to
survive to age 2 increases, selection favours investing an increasing share of one's resources into fecundity at
age 2 (i.e. =* increases). When p = 1 (so individuals always survive from age 1 to age 2) and a = 1 (so one
unit of resources invested into fecundity at age 1 or at age 2 yields the same fecundity benefit), selection
on fecundity at age 1 and 2 has the same force. So the optimal allocation strategy z* is to dedicate half
of one’s resource to reproduction at age 1 and the other half at age 2. As a result, individuals of age 1
and 2 have the same fecundity, i.e., no senescence has evolved. However it is very unlikely if not impossible
for survival to be certain (i.e. for p = 1). There is always a chance of death by accident (i.e. p < 1). In
this case, selection favours more resources into fecundity at age 1 and therefore leads to the evolution of

senescence (with individuals at age 2 having lower fecundity).

e. Using eq. (17) to plot optimal allocation strategy x* against « reveals that as « increases above 1, selection
favours investing more resources into fecundity at age 2. This is because when o > 1, one unit of resources
invested at age 2 yields greater fecundity returns than at age 1. Selection then favours spending a larger
amount of resources on reproduction at age 2 because the fecundity increases rapidly with age. From an
evolutionary point of view, this illustrates that the reduction in the strength of selection in older age-classes
(due to extrinsic mortality) can be offset by larger effects of traits on fecundity at a later age. Biologically, this
typically happens in species where fecundity is proportional to size and individuals keep growing throughout
their lives.

2.2 Individual-based simulations

The simulation program describes a population of constant size, where deceased individuals are immediately
replaced by a new one. Individuals are characterised by their age, stored in vector A, and their trait value, stored
in vector P. At each time step, we first calculate the fecundity of individuals in the population, stored in vector
Fec (line 22). Then, all individuals of age 2 die and each individual of age 1 dies with probability 1 — p. For those
that survive (with complementary probability p), we update their age from 1 to 2 in vector A (line 56). We then
replace each dead individual by a new individual of age 1 as follows. First, a parent is sampled randomly from
the population with a probability proportional to its fecundity (line 30). The new individual has the parent’s trait
value, which then mutates with probability u (line 34). Its trait value is stored in place of that of the dead and
its age is set to 1. At the end of each time step, the mean trait value is stored in vector R. At the end of the

simulation, this vector is returned.

This simulation program assumes that individuals always produce enough offspring to keep the population at a
constant size, such that density-dependent survival of the newborns can be neglected since it does not depend on
the trait. This allows simulations to run much faster with little effect on the evolutionary outcome, as shown by

the excellent fit between analytical results and simulation results presented in Figure 4.

a. Line 22 in the code calculates the fecundity of all individuals in the population using vector operations.

b. See Figure 4.



Equilibrium trait value x as a function of p
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Figure 4: Equilibrium value of simulations with different values of p. Five replicates were run for each value.



	Evolution of iteroparity and semelparity
	Evolutionary analysis
	Individual based simulations

	Evolution of ageing
	Evolutionary analysis
	Individual-based simulations


