
Solutions to exercise sheet 1

Sex, Ageing and Foraging Theory

1 Leslie Matrix

a. The Leslie matrix is given by

L =



0.456 1.68 3.40 3.40 3.40 3.40

0.52 0 0 0 0 0

0 0.60 0 0 0 0

0 0 0.71 0 0 0

0 0 0 0.71 0 0

0 0 0 0 0.71 0


, (1)

where the first row (effective fecundities) is obtained by multiplying age-specific fecundities ma by the

survival probability of newborns, p0.

b. By iterating the L matrix in R,

tmax=10 # Maximum number of years for which to iterate

n=c(1000,0,0,0,0,0) # Initial population vector

ps=c(1000,rep(0,tmax-1)) # vector with initial pop. size and zeroes

# for the others (to be filled during iteration).

for(i in 2:tmax) # For tmax-1 years,

{

n = L %*% n # Iterate the matrix

ps[i] = sum(n) # Compute the size of the population

}

we obtain the plot presented in Figure 1. The population of wild boars experiences exponential growth.

c. Using R,

eig=eigen(L)

# Growth rate (lambda) is the leading eigenvalue of L

lambda = eig$values[1]

# Stable age distribution (u) is the leading eigenvector scaled

# such that its elements sum to 1.

u = eig$vectors[,1]/sum( eig$vectors[,1] )

This yields

λ = 1.648

u = (0.662, 0.209, 0.076, 0.033, 0.014, 0.006)
(2)
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Figure 1: Population size as a function of time

d. To compute R0, we need to build a vector of survival probabilities to age a (la), multiply it by age-specific

fecundities (ma) and sum the elements of the resulting vector,

# Age specific fecundities

m=c(0.57, 2.1, 4.25, 4.25, 4.25, 4.25)

p0=0.8 # Survival probability of newborns

# Age-specific survival probabilities

psurv=c(0.52,0.60,0.71,0.71,0.71)

l=c(p0, rep(0,5)) # Survival to age ’a’ vector

for(i in 1:5)

{

l[i+1] = l[i]*psurv[i]

}

R0 = sum( l * m ) # Compute R0

This yields R0 = 4.058. This tells us that each individual leaves on average 4.058 successful offspring,

indicating that the population will grow indefinitely.

2 Individual-based simulations

We observe a good match between Leslie matrix predictions and simulation results (Figure 2).
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Figure 2: Population size as a function of time (right-hand panel) and stable age distribution (left-hand panel).
Red dots and lines depict predictions from the Leslie matrix, black dots and line depict simulation results.

3 Density regulation

a. To modify the simulation program, we need to add a parameter to the function DYN() and modify how P0

is calculated in the time loop. For the parameter we have on line 14

DYN=function(n0, n_a, Fec, P, p0, gamma, nt, nmax).

Further down the code (line 36), we modify the code as follows

P0 = p0/(1+gamma*length(A)) # Length(A) corresponds to population size.

The population first grows and then stabilises at an equilibrium size due to density-regulation. The larger

the population, the harder it becomes for newborns to survive to maturity, which limits population growth

(Figure 3).

b. The Leslie matrix Lreg(Nt) associated with this new model depends on population size at time t. We obtain

it by modifying the first row of the previous matrix (eq. 1), yielding

Lreg(Nt) =



0.456

1 + γNt

1.68

1 + γNt

3.40

1 + γNt

3.40

1 + γNt

3.40

1 + γNt

3.40

1 + γNt

0.52 0 0 0 0 0

0 0.60 0 0 0 0

0 0 0.71 0 0 0

0 0 0 0.71 0 0

0 0 0 0 0.71 0


, (3)

where

Nt =

6∑
i=1

ni,t (4)
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denotes population size at time t. To iterate this matrix numerically, we have to update it with the new

population size at each generation. Using R,

# Leslie matrix

Lreg = matrix(0, nrow = 6, ncol = 6) # This will be our Leslie matrix.

p0=0.8 # density-independent establishment probability

gam=0.0005 # density-dependence

tmax=100

fec= c( 0.57, 2.10, 4.25, 4.25, 4.25, 4.25) # Fecundities

surv=c(0.52, 0.60, 0.71, 0.71, 0.71) # Survival probabilities

nv=c(1000,0,0,0,0,0) # Initial population

P0=p0/(1+gam*sum(nv)) # Density-dependent survival probability

for(i in 1:ncol(L)) # For each column,

{

Lreg[1,i] = fec[i]*P0 # Add the effective fecundity to the first row

if(i < ncol(Lreg))

{

Lreg[i+1,i] = surv[i] # And survival to the corresponding row

}

}

results=matrix(0,ncol=6,nrow=tmax) # Matrix of results

results[1,]=nv # First row of results is the initial population

for(i in 2:tmax) # For tmax-1 generations,

{

nv = Lreg %*% nv # Iterate the matrix

results[i,]=nv # Store the results

P0=p0/(1+gam*sum(nv)) # Calculate the new survival probability

Lreg[1,] = fec*P0 # Modify the matrix

}

The population size is predicted to increase and reach a plateau, much like what we observed in our

simulation.

c. To calculate R0, we use the same approach as in exercise 1 (question d), but we need to include the fact

that the survival probability of newborns changes with time.

la[1] = 1 # Vector of cumulated survival probabilities

# given maturity has been reached

for(i in 2:6)

{

la[i]=la[i-1]*surv[i-1]

}

R0=rep(0,tmax) # Vector that will contain R0 values

vp0 = p0/(1 + gam*rowSums(results)) # p0(Nt) for each time point.

for(i in 1:tmax)

{

# Calculate R0 for each time point

R0[i] = vp0[i]*sum( fec*la )

}

We obtain the plot shown in Figure 4. R0 decreases through time and reaches R0 = 1, indicating that

individuals produce on average one successful offspring in their life so that the population remains stable

(i.e. equilibrium is reached).
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Figure 3: Population size as a function of time in a simulation (black dots), and as predicted by the Leslie matrix
(red line).

4 Selection

a. Selection is stabilising around the trait value x = 2, as fecundity is maximised for this value. The parameter

ω controls the width of the peak around x = 2, that is how steeply fecundity drops when x moves away

from the optimum. Thus, it controls the strength of selection on trait x.

b. Since the mutant is rare, we may neglect its effect on density-dependent survival. Thus, its lifetime repro-

ductive success is given by

R0(y, x) =
m1(y)

m1(x)
. (5)

Setting y = x thus yields

R0(x, x) =
m1(x)

m1(x)
= 1. (6)

c. The selection gradient acting on x is given by

s(x) =
∂R0(y, x)

∂y

∣∣∣∣
y=x

= 2ω(2− x), (7)

and the singular strategy x∗ is therefore

s(x∗) = 0 ⇔ x∗ = 2. (8)
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Figure 4: Population size as a function of time
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Figure 5: Fecundity m1(x) as a function of x for ω = 0.25, 0.50, 0.75 (shades of grey).
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