Part III - Foraging theory

Sex, Ageing and Foraging Theory

resources

energy

offspring

fitness

• Animal forages on multiple equivalent patches with finite amount of resources.

- Animal forages on multiple equivalent patches with finite amount of resources.
- How much time y should it spent foraging on a single patch when searching is costly?

- Animal forages on multiple equivalent patches with finite amount of resources.
- How much time y should it spent foraging on a single patch when searching is costly?
- If it stays too long, resources get depleted; too short and it does not regain energy lost from search.

• g(y) : **net** energy gain from staying y in a patch

- g(y) : **net** energy gain from staying y in a patch
- Rate of energy gain from search + foraging :

$$R(y) = \frac{g(y)}{y+T}$$

- g(y) : **net** energy gain from staying y in a patch
- Rate of energy gain from search + foraging :

$$R(y) = \frac{g(y)}{y+T}$$

• Fitness : $w(y, x) \propto R(y)$

- g(y) : **net** energy gain from staying y in a patch
- Rate of energy gain from search + foraging :

$$R(y) = \frac{g(y)}{y+T}$$

- Fitness : $w(y, x) \propto R(y)$
- Selection gradient :

$$s(x) \propto \frac{g'(x)}{x+T} - \frac{g(x)}{(x+T)^2}$$

Marginal value theorem

Optimum x^* such that $s(x^*) = 0$, i.e., such that

$$g'(x^*) = \frac{g(x^*)}{x^* + T} = R(x)$$

Marginal value theorem

Optimum x^* such that $s(x^*) = 0$, i.e., such that

$$g'(x^*) = \frac{g(x^*)}{x^* + T} = R(x)$$

Marginal value theorem

Optimum x^* such that $s(x^*) = 0$, i.e., such that

$$g'(x^*) = \frac{g(x^*)}{x^* + T} = R(x)$$

An animal should leave when the marginal (or instantaneous) rate of energy gain $g'(x^*)$ has fallen to the rate of energy gain $R(x^*)$

When selection favours risky foraging?

When selection favours risky foraging? Variation in relationship with uncertainty

High condition e.g., well-fed

Low condition e.g., poorly-fed

Risk not worth taking: fitness cost of bad times outweighs fitness benefits of good times

Risk not worth taking: fitness cost of bad times outweighs fitness benefits of good times

Risk not worth taking: fitness cost of bad times outweighs fitness benefits of good times

Risk worth taking: fitness benefits of good times outweigh fitness cost of bad times

Risk not worth taking: fitness cost of bad times outweighs fitness benefits of good times

Risk worth taking: fitness benefits of good times outweigh fitness cost of bad times

The exploitation of renewable resources

• Biotic resource with density *n*,

$$\frac{dn}{dt} = r\left(1 - \frac{n}{K}\right)n - n_{\rm c}h(x)n$$

logistic growth

resource density, *n* 1000 800 foraging function 600 400 200 ⊢ time 10 2 8 6 4 harvesting by population of n_c consumers with foraging effort *x*

• Biotic resource with density *n*, / for

$$\frac{dn}{dt} = r\left(1 - \frac{n}{K}\right)n - n_{\rm c}h(x)n$$

logistic growth

harvesting by population of n_c consumers with foraging effort x

• Equilibrium resource density $\hat{n}(x)$ such that

$$\hat{n}(x) = K\left(1 - n_{\rm c}\frac{h(x)}{r}\right)$$

resource density, n

• Biotic resource with density *n*,

$$\frac{dn}{dt} = r\left(1 - \frac{n}{K}\right)n - n_{\rm c}h(x)n$$

logistic growth

harvesting by population of n_c consumers with foraging effort *x*

• Equilibrium resource density $\hat{n}(x)$ such that

$$\hat{n}(x) = K\left(1 - n_{\rm c}\frac{h(x)}{r}\right)$$

• Biotic resource with density *n*,

$$\frac{dn}{dt} = r\left(1 - \frac{n}{K}\right)n - n_{\rm c}h(x)n$$

logistic growth

harvesting by population of n_c consumers with foraging effort *x*

• Equilibrium resource density $\hat{n}(x)$ such that

$$\hat{n}(x) = K\left(1 - n_{\rm c}\frac{h(x)}{r}\right)$$

 $\int_{a}^{b(x) = x} h(x) = n_{c}h(x) \times \hat{n}(x) = n_{c}x \times K\left(1 - n_{c}\frac{x}{r}\right)$

• Total yield =
$$n_c h(x) \times \hat{n}(x) = n_c x \times K \left(1 - \frac{1}{2}\right)$$

• x_{MSY} : Foraging effort that maximises total yield =

$$x_{\text{MSY}} = \frac{1}{n_{\text{c}}} \frac{r}{2}$$

• MSY = $n_{\text{c}}h(x_{\text{MSY}}) \times \hat{n}(x_{\text{MSY}}) = \frac{Kr}{4}$
• Resource density = $\hat{n}(x_{\text{MSY}}) = \frac{K}{2}$

• Total yield =
$$n_c h(x) \times \hat{n}(x) = n_c x \times K \left(1 - \frac{1}{2}\right)$$

• x_{MSY} : Foraging effort that maximises total yield =

$$x_{\text{MSY}} = \frac{1}{n_{\text{c}}} \frac{r}{2}$$

• MSY = $n_{\text{c}}h(x_{\text{MSY}}) \times \hat{n}(x_{\text{MSY}}) = \frac{Kr}{4}$
• Resource density = $\hat{n}(x_{\text{MSY}}) = \frac{K}{2}$

• Any effort above x_{MSY} amounts to over-exploitation.

 Well-mixed population where individuals all exploit the same resource and compete with one another.

- Well-mixed population where individuals all exploit the same resource and compete with one another.
- Fitness of a mutant with foraging effort y in a resident population x, individual yield - individual cost of effort

$$w(y, x) \propto y\hat{n}(x) - c(y)$$

- Well-mixed population where individuals all exploit the same resource and compete with one another.
- Fitness of a mutant with foraging effort y in a resident population x, individual vield - individual cost of effort

$$(1)$$

$$w(y, x) \propto y\hat{n}(x) - c(y)$$

- Selection gradient, $s(x) \propto \hat{n}(x) c'(x)$
- Optimal strategy x^* such that $\hat{n}(x^*) = c'(x^*)$

- Well-mixed population where individuals all exploit the same resource and compete with one another.
- Fitness of a mutant with foraging effort y in a resident population x, individual yield - individual cost of effort

$$w(y, x) \propto y \hat{n}(x) - c(y)$$

- Selection gradient, $s(x) \propto \hat{n}(x) c'(x)$
- Optimal strategy x^* such that $\hat{n}(x^*) = c'(x^*)$

•
$$x^* = x_{MSY} \frac{2Kn_c}{Kn_c + c_0 r}$$
 $h(x) = x$
 $c(x) = \frac{c_0}{2}x^2$

- Well-mixed population where individuals all exploit the same resource and compete with one another.
- Fitness of a mutant with foraging effort y in a resident population x, individual yield - individual cost of effort

$$w(y, x) \propto y \hat{n}(x) - c(y)$$

- Selection gradient, $s(x) \propto \hat{n}(x) c'(x)$
- Optimal strategy x^* such that $\hat{n}(x^*) = c'(x^*)$

•
$$x^* = x_{MSY} \frac{2Kn_c}{Kn_c + c_0 r}$$
 $h(x) = x$
 $c(x) = \frac{c_0}{2}x^2$

When cost is large, $c_0 \ge \frac{Kn_c}{1}$ then $x^* \le x_{MSY}$. Otherwise, $x^* > x_{MSY}$. When $c_0 = 0$, evolution leads to resource extinction.

- Well-mixed population where individuals all exploit the same resource and compete with one another.
- Fitness of a mutant with foraging effort y in a resident population x, individual yield - individual cost of effort

$$w(y, x) \propto y \hat{n}(x) - c(y)$$

- Selection gradient, $s(x) \propto \hat{n}(x) c'(x)$
- Optimal strategy x^* such that $\hat{n}(x^*) = c'(x^*)$

•
$$x^* = x_{MSY} \frac{2Kn_c}{Kn_c + c_0 r}$$
 $h(x) = x$
 $c(x) = \frac{c_0}{2}x^2$

Due to competition, evolution typically leads to overexploitation and lower yield than if individuals were coordinated.

When cost is large, $c_0 \ge \frac{Kn_c}{m}$ then $x^* \le x_{MSY}$. Otherwise, $x^* > x_{MSY}$. When $c_0 = 0$, evolution leads to resource extinction.

Summary

- Marginal value theorem allows to understand when an organism should leave for new pastures: leave when the *marginal* rate of energy gain has fallen to the total rate of gain.
- Risky foraging behaviours can be explained from state dependent payoffs where the fitness of low condition individuals accelerates with energy.
- For biotic resources, there may exist a foraging effort such that yield is maximised and resources are maintained. Due to competition, however, natural selection tends to favour overconsumption.

time