# **Evolution of life-history traits**

Consider a population monomorphic for trait x (e.g. size) at demographic equilibrium (under densitydependent regulation).



- Consider a population monomorphic for trait x (e.g. size) at demographic equilibrium (under density-dependent regulation).
- Suppose a mutant appears with alternative trait y.



- Consider a population monomorphic for trait x (e.g. size) at demographic equilibrium (under density-dependent regulation).
- Suppose a mutant appears with alternative trait y.

Is the mutant going to invade and replace the resident ?



- Consider a population monomorphic for trait x (e.g. size) at demographic equilibrium (under densitydependent regulation).
- Suppose a mutant appears with alternative trait y.
- In a large well mixed population, mutant invades only if



- Consider a population monomorphic for trait x (e.g. size) at demographic equilibrium (under density-dependent regulation).
- Suppose a mutant appears with alternative trait y.
- In a large well mixed population, mutant invades only if

$$R_0(y, x) = \sum_{a=1}^{A} l_a(y, x) m_a(y, x) > 1$$

i.e. if a mutant on average has more than one offspring over its lifetime.



# **Evolutionary analysis**

- For quantitative traits, mutant lifetime reproductive success  $R_0(y, x)$  defines a **fitness landscape**.
- An evolving population population **climbs** this landscape to arrive to a maximum.





# **Evolutionary analysis**

- For quantitative traits, mutant lifetime reproductive success  $R_0(y, x)$  defines a **fitness landscape**.
- An evolving population population climbs this landscape to arrive to a maximum.
- The direction of this climb is given by the selection gradient,

$$s(x) = \frac{\partial R(y, x)}{\partial y} \bigg|_{y=x}$$





Mutant trait, y

# **Evolutionary analysis**

- For quantitative traits, mutant lifetime reproductive success  $R_0(y, x)$  defines a **fitness landscape**.
- An evolving population population **climbs** this landscape to arrive to a maximum.
- The direction of this climb is given by the selection gradient,

$$s(x) = \frac{\partial R(y, x)}{\partial y} \bigg|_{y=x}$$

• A maximum  $x^*$  is such that

$$s(x^*) = 0$$

and

$$\frac{\partial s(x)}{\partial x} \bigg|_{x=x^*} < 0$$







- Individuals live one year and reproduce once.
- •Females have access to same amount of resources. They invest share x into fecundity and 1-x into parental care that improves survival from age 0 to 1.

- Individuals live one year and reproduce once.
- •Females have access to same amount of resources. They invest share x into fecundity and 1-x into parental care that improves survival from age 0 to 1.
- •Fecundity at age 1 of a mutant investing y:

 $m_1(y, x) = cy$ 

•Offspring survival from age 0 to 1:  $p_0(y, x) = (1 - y)K(x)$ 

K(x) > 0Densitydependent competition from resident



- Individuals live one year and reproduce once.
- •Females have access to same amount of resources. They invest share x into fecundity and 1-x into parental care that improves survival from age 0 to 1.
- •Fecundity at age 1 of a mutant investing y:

 $m_1(y, x) = cy$ 

•Offspring survival from age 0 to 1:  $p_0(y, x) = (1 - y)K(x)$ 

•LRS:  $R_0(y, x) = \sum l_a(y, x) m_a(y, x) = (1 - y) K(x) \times cy$ a=1





K(x) > 0Densitydependent competition from resident





- Individuals live one year and reproduce once.
- •Females have access to same amount of resources. They invest share x into fecundity and 1-x into parental care that improves survival from age 0 to 1.
- •Fecundity at age 1 of a mutant investing y:

 $m_1(y, x) = cy$ 

•Offspring survival from age 0 to 1:  $p_0(y, x) = (1 - y)K(x)$ 

•LRS:  $R_0(y, x) = \sum l_a(y, x) m_a(y, x) = (1 - y) K(x) \times cy$ a=1



K(x) > 0Densitydependent competition from resident





#### **Trade offs** due to finite resources





# **Iteroparity** *vs.* **semelparity Exercise** sheet

• Semelparity: Reproduce only once during one's lifetime

Iteroparity: Reproduce multiple times





© 2012 Nature Education All rights reserved.

# Age at maturity

Age at which a juvenile body matures to become capable of sexual reproduction



#### Age at maturity Trade off

# Survival till maturity



• Age at maturity, y, evolving trait:

$$m_a(y, x) = \begin{cases} 0, & 1 \le a < y \\ F(y), & y \le a \end{cases}$$

where fecundity increases with age at maturity, F(y).



• Age at maturity, y, evolving trait:

$$m_a(y, x) = \begin{cases} 0, & 1 \le a < y \\ F(y), & y \le a \end{cases}$$

where fecundity increases with age at maturity, F(y).

$$p_a(y, x) = \begin{cases} q_{\rm J}, & 1 \le a < y \\ q_{\rm M}, & y \le a \end{cases}$$







• Age at maturity, y, evolving trait:

$$m_a(y, x) = \begin{cases} 0, & 1 \le a < y \\ F(y), & y \le a \end{cases}$$

where fecundity increases with age at maturity, F(y).

$$p_a(y, x) = \begin{cases} q_{\rm J}, & 1 \le a < y \\ q_{\rm M}, & y \le a \end{cases}$$

$$K(x) = p_0$$
  
such that  
$$R_0(x, x) = 1$$
$$R_0(y, x) = \sum_{a=y}^{\infty} K(x)q_J^{y-1}q_M^{a-y} \times F(y)$$



• Age at maturity, y, evolving trait:

$$m_a(y, x) = \begin{cases} 0, & 1 \le a < y \\ F(y), & y \le a \end{cases}$$

where fecundity increases with age at maturity, F(y).

$$p_a(y, x) = \begin{cases} q_{\rm J}, & 1 \le a < y \\ q_{\rm M}, & y \le a \end{cases}$$

$$K(x) = p_0$$
  
such that  
$$R_0(x, x) = 1$$
$$R_0(y, x) = \sum_{a=y}^{\infty} K(x)q_J^{y-1}q_M^{a-y} \times F(y)$$
$$= K(x)\frac{q_J^{y-1}}{1-q_M}F(y)$$



• Age at maturity, y, evolving trait:

$$m_a(y, x) = \begin{cases} 0, & 1 \le a < y \\ F(y), & y \le a \end{cases}$$

where fecundity increases with age at maturity, F(y).

$$p_a(y, x) = \begin{cases} q_{\rm J}, & 1 \le a < y \\ q_{\rm M}, & y \le a \end{cases}$$

$$K(x) = \frac{1 - q_{\rm I}}{F(x)q_{\rm J}^x}$$

$$K(x) = p_0$$
such that
$$R_0(x, x) = 1$$

$$R_0(y, x) = \sum_{a=y}^{\infty} K(x)q_{\rm J}^{y-1}q_{\rm M}^{a-y} \times F(y)$$

$$= K(x)\frac{q_{\rm J}^{y-1}}{1 - q_{\rm M}}F(y)$$





• Age at maturity, y, evolving trait:

$$m_a(y, x) = \begin{cases} 0, & 1 \le a < y \\ F(y), & y \le a \end{cases}$$

where fecundity increases with age at maturity, F(y).

$$p_a(y, x) = \begin{cases} q_{\rm J}, & 1 \le a < y \\ q_{\rm M}, & y \le a \end{cases}$$

$$R_{0}(y, x) = \sum_{a=y}^{\infty} K(x)q_{J}^{y-1}q_{M}^{a-y} \times F(y)$$
$$= K(x)\frac{q_{J}^{y-1}}{1-q_{M}}F(y)$$
$$= q_{J}^{y-x} \times \frac{F(y)}{F(x)}$$





When  $R_0(x+1,x) = q_J \frac{F(x+1)}{F(x)} > 1$ , i.e. when  $\frac{F(x)}{F(x+1)} < q_J$ 



When 
$$R_0(x + 1, x) = q_J \frac{F(x + 1)}{F(x)} > 1$$
, i.e. when  $\frac{F(x)}{F(x + 1)} < q_J$ 



When 
$$R_0(x + 1, x) = q_J \frac{F(x + 1)}{F(x)} > 1$$
, i.e. when  $\frac{F(x)}{F(x + 1)} < q_J$ 





When 
$$R_0(x+1,x) = q_J \frac{F(x+1)}{F(x)} > 1$$
, i.e. when  $\frac{F(x)}{F(x+1)} < q_J$ 





When 
$$R_0(x + 1, x) = q_J \frac{F(x + 1)}{F(x)} > 1$$
, i.e. when  $\frac{F(x)}{F(x + 1)} < q_J$ 





#### When is it advantageous to delay maturity by a year? $\frac{(+1)}{(x)}$ > 1, i.e. when $\frac{F(x)}{F(x+1)} < q_{\rm J}$ When juvenile survival is high and/or fecundity increases quickly with age at maturity. optimal age = 3 optimal age = 14 $F(\mathbf{x})/F(\mathbf{x+1})$ $F(\mathbf{x})/F(\mathbf{x+1})$ qj $q_{J}$ F(x) F(x) 10 15 20 5 10 10 15 20 5

When 
$$R_0(x + 1, x) = q_J \frac{F(x + 1, x)}{F(x)}$$







#### **Effect of size at maturity** Fecundity associated with size in many species



J. of Orthoptera Research, 17(2):265-271 (2008)



#### Effect of size at maturity Fecundity associated with size in many species



Weiner et al. Journal of Ecology 2009





#### **Effect of size at maturity** Mediates the survival/fecundity trade-off

# Survival till maturity



#### Effect of size at maturity **Roff's model (adapted)**

• Age at maturity, y, evolving trait:

$$m_a(y,x) = \begin{cases} 0, & 1 \le a < y \\ cL_a(y)^3, & y \le a \end{cases}$$

where  $L_a(y)$  is length at age *a* (so  $L_a(y)^3$  is volume), which increases with y.





• Age at maturity, y, evolving trait:

$$m_a(y,x) = \begin{cases} 0, & 1 \le a < y \\ cL_a(y)^3, & y \le a \end{cases}$$

where  $L_a(y)$  is length at age *a* (so  $L_a(y)^3$  is volume), which increases with *y*.



$$L_{a}(y) = \begin{cases} L_{\max}(1 - e^{-ka}), & 1 \le a < y \\ L_{\max}(1 - e^{-ky}), & y \le a \end{cases}$$

• Age at maturity, y, evolving trait:

$$m_a(y,x) = \begin{cases} 0, & 1 \le a < y \\ cL_a(y)^3, & y \le a \end{cases}$$

where  $L_a(y)$  is length at age *a* (so  $L_a(y)^3$  is volume), which increases with *y*.



$$L_{a}(y) = \begin{cases} L_{\max}(1 - e^{-ka}), & 1 \le a < y \\ L_{\max}(1 - e^{-ky}), & y \le a \end{cases}$$

![](_page_36_Figure_6.jpeg)

• Age at maturity, y, evolving trait:

$$m_a(y,x) = \begin{cases} 0, & 1 \le a < y \\ cL_a(y)^3, & y \le a \end{cases}$$

where  $L_a(y)$  is length at age *a* (so  $L_a(y)^3$  is volume), which increases with *y*.

![](_page_37_Figure_4.jpeg)

$$L_{a}(y) = \begin{cases} L_{\max}(1 - e^{-ka}), & 1 \le a < y \\ L_{\max}(1 - e^{-ky}), & y \le a \end{cases}$$

![](_page_37_Figure_6.jpeg)

• Age at maturity, y, evolving trait:

$$m_a(y,x) = \begin{cases} 0, & 1 \le a < y \\ cL_a(y)^3, & y \le a \end{cases}$$

where  $L_a(y)$  is length at age *a* (so  $L_a(y)^3$  is volume), which increases with *y*.

$$p_a(y, x) = \begin{cases} q_{\rm J}, & 1 \le a < y \\ q_{\rm M}, & y \le a \end{cases}$$

$$L_{a}(y) = \begin{cases} L_{\max}(1 - e^{-ka}), & 1 \le a < y \\ L_{\max}(1 - e^{-ky}), & y \le a \end{cases}$$

![](_page_38_Figure_7.jpeg)

# Mutant reproductive success

• Age at maturity, y, evolving trait:

$$m_a(y,x) = \begin{cases} 0, & 1 \le a < y \\ cL_a(y)^3, & y \le a \end{cases}$$

where  $L_a(y)$  is length at age *a* (so  $L_a(y)^3$  is volume), which increases with y.

$$p_a(y, x) = \begin{cases} q_{\rm J}, & 1 \le a < y \\ q_{\rm M}, & y \le a \end{cases}$$

$$L_{a}(y) = \begin{cases} L_{\max}(1 - e^{-ka}), & 1 \le a < y \\ L_{\max}(1 - e^{-ky}), & y \le a \end{cases}$$

$$R_{0}(y,x) = \sum_{a=y}^{\infty} K(x)q_{J}^{y-1}q_{M}^{a-y} \times cL_{a}(y)$$
$$= q_{J}^{y-x} \times \frac{\left(1 - e^{-ky}\right)^{3}}{\left(1 - e^{-kx}\right)^{3}}$$

![](_page_39_Picture_9.jpeg)

## **Optimal age at maturity**

![](_page_40_Figure_1.jpeg)

![](_page_40_Picture_2.jpeg)

![](_page_40_Picture_3.jpeg)

# Summary

- A rare mutant y invades a x population at demographic equilibrium when mutant reproductive success  $R_0(y, x) > 1$ .
- Evolution of life history traits determined by trade-offs due to finite resources.
- Delayed maturity favoured by high survival till maturity and rapidly increasing fecundity.
- Fecundity is often mediated by size (rather than age) so that delayed maturity favoured by slow growth.

![](_page_41_Figure_5.jpeg)

![](_page_41_Figure_6.jpeg)

![](_page_41_Figure_7.jpeg)

![](_page_41_Figure_8.jpeg)