Evolution of life-history traits
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Mutant fithess and reproductive success

* (Consider a population monomorphic for trait x (e.qg.
size) at demographic equilibrium (under density-
dependent regulation).

 Suppose a mutant appears with alternative trait y.

* |n alarge well mixed population, mutant invades
only if

A
RO(ya X) — Z la(ya x)ma(y, X) > 1

a=1

l.e. If a mutant on average has more than one
offspring over its lifetime.
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Evolutionary analysis

For quantitative traits, mutant lifetime reproductive success

Ry(y, x) defines a fitness landscape.

An evolving population population climbs this landscape to

arrive to a maximum.

The direction of this climb is given by the selection gradient,

OR(y, x)
s(x) =
dy
A maximum x* is such that y=X
s(x*) =0
and
0
s(x) <0
0x o
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Fecundity vs. offspring survival

Individuals live one year and reproduce once.

‘Females have access to same amount of resources.

They invest share x into fecundity and 1-x into

parental care that improves survival from age 0 to 1.
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Trade offs

due to finite resources

Survival

~— Fecundity




Ilteroparity vs. semelparity

Exercise sheet

* Semelparity: Reproduce only
once during one’s lifetime

* lteroparity: Reproduce multiple
times

© 2012 Nature Education All rights reserved.



Age at maturity

 Age at which a juvenile body matures to become capable of sexual

reproduction

Typical age at maturity
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Age at maturity

A model
K(x) = py
| | | such that
* Age at maturity, y, evolving trait: Ry(x,x) = 1

B 0, 1 <a<y /
%) = F(y), y<a

Ro(y,x) = Z K(x)g' ™ gy X F(y)

where fecundity increases with age at
maturity, F(y).

* Differential survival among immature = K(x)
juveniles and mature adults: 1 — gy

g, l1=<a<y
qdm> YSCI

Py, x) = {
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Age at maturity

A model

* Age at maturity, y, evolving trait:

-0, 1 <a<y
a0, = F(y), y<a

where fecundity increases with age at
maturity, F(y).

Ro(y,x) = Z K(x)g' ™ gy X F(y)

y—1
* Differential survival among immature = K(x) 1 F(y)
juveniles and mature adults: 1 — gy
q, l<a<y e FOY)
pa(yvx): { < _qu XXF
Idvi> Y =>d (X)
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When is it advantageous to delay maturity by a year?

Fix+ 1) | F(x)
When RO(X + I,X) — QJT > 1, l.e. when m < qi
X X

When juvenile survival is high and/or fecundity

optimal age = 3 Increases quickly with age at maturity.
; QFEE,MQL age = 14
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Effect of size at maturity

Fecundity associated with size iIn many species
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Effect of size at maturity

Fecundity associated with size iIn many species
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Effect of size at maturity

Mediates the survival/fecundity trade-off
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Effect of size at maturity
Roff’s model (adapted)

* Age at maturity, y, evolving trait:

0, 1 <a<y
a3 = cL,(y)’, y<a

where L (y) is length at age a (so La(y)3 iS
volume), which increases with y.
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Von Bertalanffy growth equations
Roff’s model (adapted)
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Von Bertalanffy growth equations

Roff’s model (adapted)

—ka
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Von Bertalanffy growth equations

Roff’s model (adapted)

* Age at maturity, y, evolving trait:

0, 1 <a<y
ma(ya .X) - CLa(y)g, y S a

where L (y) is length at age a (so La(y)3 IS Lmax

volume), which increases with y.
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Von Bertalanffy growth equations

Roff’s model (adapted)

* Age at maturity, y, evolving trait: L (y) = {Lmax(l — e_ka), 1 <a<y
0, l<a<y Lyw(1—¢™), y<a

m,(y,x) = {cLa(y)3, v<a -

where L (y) is length at age a (so L (y)° is R

volume), which increases with y.

» Differential survival among immature
juveniles and mature adults:

q, 1<a<y
dv» Y=< a
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Mutant reproductive success

—ka
* Age at maturity, y, evolving trait: L(y) = { L..(1—e™), 1Za<y
d B —ky <
(v, %) 0, 1 <a<y Lo(1—e™), y<a
m (y,x) =
’ CLa(y)3, Yy <a

where L (y) is length at age a (so La(y)3 is ~1 a_y 3
volume), which increases with . Ro(y ,X) = Z K(X)QJ X cL (y)

» Differential survival among immature ;
juveniles and mature adults: (1 - e—ky)
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Optimal age at maturity

2ge at maturity, x° Delayed maturity favoured by
50| gy = 0.95 slow growth rate.
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Summary

* A rare mutant y invades a x population at
demographic equilibrium when mutant

reproductive success Ry(y, x) > 1.

* Evolution of life history traits determined by
trade-offs due to finite resources.

* Delayed maturity favoured by high survival

till maturity and rapidly increasing fecundity.

 Fecundity is often mediated by size (rather
than age) so that delayed maturity favoured
by slow growth.
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