
Evolution of life-history traits



• Consider a population monomorphic for trait x (e.g. 
size) at demographic equilibrium (under density-
dependent regulation).
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• Consider a population monomorphic for trait x (e.g. 
size) at demographic equilibrium (under density-
dependent regulation).


• Suppose a mutant appears with alternative trait y. 

• In a large well mixed population, mutant invades 
only if 


i.e. if a mutant on average has more than one 
offspring over its lifetime. 
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Evolutionary analysis

• For quantitative traits, mutant lifetime reproductive success 
 defines a fitness landscape.


• An evolving population population climbs this landscape to 
arrive to a maximum.


• The direction of this climb is given by the selection gradient, 


• A maximum  is such that 
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Example
Fecundity vs. offspring survival



•Individuals live one year and reproduce once.


•Females have access to same amount of resources. 
They invest share x into fecundity and 1-x into 
parental care that improves survival from age 0 to 1.


•Fecundity at age 1 of a mutant investing y:


•Offspring survival from age 0 to 1:


•LRS:
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due to finite resources
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Iteroparity vs. semelparity
Exercise sheet

• Semelparity: Reproduce only 
once during one’s lifetime


• Iteroparity: Reproduce multiple 
times

© 2012 Nature Education All rights reserved.



Age at maturity

• Age at which a juvenile body matures to become capable of sexual 
reproduction

Bell (1980) Am Nat

Stearns (1992)
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Age at maturity
A model

• Age at maturity, y, evolving trait:
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Effect of size at maturity
Fecundity associated with size in many species

J. of Orthoptera Research, 17(2):265-271 (2008)



Effect of size at maturity
Fecundity associated with size in many species

allocated to (d) reproductive structures (fruits and seeds), is

also shed.) Thus, using biomass production, which in practice

means including dead and shed structures in V, is one solution

to defining size in R–V relationships for iteroparous plants.

The best way to investigate the total R–V relationship is to

collect all the seeds produced by an individual throughout its

life (Fig. 2; Weiner et al. 2009). Information from any single

harvest or bout of reproduction will not reflect the total R–V

relationship.

As the allometric exponent of dead structural tissue

(b) versus ((a) + (c) + (d)) will be greater than unity for large

upright plants due to biomechanical constraints, and for

iteroparous herbaceous perennials if storage organs are

included in V, we would expect the allometric exponent of

reproductive structures (d) versus ((a) +(b) + (c)) to be <1,

assuming the proportion of structures that are shed as dead (c)

is relatively constant. This argument may not be relevant for

short-lived herbaceous plants but valid for long-lived woody

plants. This may explain why short-lived herbaceous plants

tend to show linear R–V relationships, whereas longer-lived

organisms with more structural tissue or storage organs (such

as Raphanus raphanistrum (Fig. 4) and Rumex obtusifolius

(Fig. 5)) show logR–logV slopes<1.

Plant life-history theory would benefit from an allometric

perspective. For example, according to optimal allocation

theory, to maximize seed production, plants should reinvest

all resources into further growth (stems, leaves and roots),

100% vegetative investment and 0% reproductive allocation,

for most of their lives, and then switch at a certain time to

investing all resources into reproduction, 0% further vegeta-

tive investment, 100% reproductive investment: a monocar-

pic strategy (Cohen 1968; Ellner 1987). In the allometric

view, this means that the plant should grow along the x-axis

and then switch to growth in the y-variable (Fig. 6). If plants

do not succeed in completing their potential reproduction,

the R–V graph will lie below the line. In such a case, the al-

lometric growth trajectory is distinct from the static, inter-

individual allometric relationship (Clauss & Aarssen 1994a).

For example, the static inter-individual allometric slope of

estimated R versus estimated V for tropical trees was much

>1 (Thomas 1996). This would occur if the individuals were

distributed along the optimal strategy line in Fig. 6. An

extreme example would be a monocarpic species, in which

an individual does not produce fruits and seeds until the end

of its life. The R–V relationship among individuals in a pop-

ulation cannot reflect the developmental trajectory for a

plant that only flowers at the end of its life. The other

extreme is a plant such as Senecio vulgaris, an ‘iteroparous

annual’ that starts flowering at a very small size and contin-

ues growing and reproducing until it dies (Weiner et al.

2009). In this case, the total R–V relationship among individ-

uals does reflect the developmental trajectory.

Fig. 3. Individual plant grain yield versus shoot biomass for maize
(Zea mays cv. DK752) in two experiments (circles, squares) at five
densities (2 plants m)2: black, 4 plants m)2: dark grey, 8 plants m)2:
middle grey, 16 plants m)2: light grey and 30 plants m)2: empty sym-
bol). Two features of these data illustrate the importance of reproduc-
tive morphology for the R–V relationship: (i) because there is a
minimum size for an ear, there is clear evidence of a minimum size for
reproduction; (ii) plants above the dotted line have more than one
ear. Relatively large individuals that only make one ear cannot fully
utilize their size to produce more yield. Overall r2 = 0.941. When
experiment and density are added as variables r2 = 0.952; with all
interactions r2 = 0.966. Thus, although plasticity can be detected, its
effects are very small (after Echarte &Andrade 2003).

Fig.2. Relationship between mass of seeds (actually fruits) produced
by Senecio vulgaris individuals and their vegetative biomass in two
glasshouse experiments. Circles are from experiment 2 (shading rep-
resents different fertility levels), all other data from experiment 1
(symbols represent different treatment combinations of water, nutri-
ents and competition). Single regression line (shown): log
R = )0.57 + 1.026 logV; r2 = 0.971 (Weiner et al. 2009). Data are
shown and analysed here on log–log scale because the residual struc-
ture is not consistent with regression on a linear scale, but a logR–log
V slope = 1 is equivalent to model a: R ! V. There were small but
significant effects of the treatments on the intercept, but not the slope,
of the logR–logV relationship.

1228 J. Weiner et al.

" 2009 The Authors. Journal compilation " 2009 British Ecological Society, Journal of Ecology, 97, 1220–1233

Weiner et al. Journal of Ecology 2009
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Survival till 
maturity

Fecundity at 
maturity

SIZE



Effect of size at maturity
Roff’s model (adapted)

• Age at maturity, y, evolving trait:
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Roff’s model (adapted)
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Mutant reproductive success

• Age at maturity, y, evolving trait:


 


where  is length at age a (so  is 
volume), which increases with y. 


• Differential survival among immature 
juveniles and mature adults: 
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• A rare mutant y invades a x population at 
demographic equilibrium when mutant 
reproductive success .  


• Evolution of life history traits determined by 
trade-offs due to finite resources.


• Delayed maturity favoured by high survival 
till maturity and rapidly increasing fecundity. 


• Fecundity is often mediated by size (rather 
than age) so that delayed maturity favoured 
by slow growth.    
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