Solutions to exercise sheet 6

Sex, Ageing and Foraging Theory

Exercise 1: Competition for renewable resources among relatives

a. Solving for $\hat{n}(x)$ such that

$$\left. \frac{dn}{dt} \right|_{n=\hat{n}(x)} = 0,\tag{1}$$

we obtain equilibrium resource density,

$$\hat{n}(x) = \left(1 - \frac{n_{\rm c} x}{r}\right) K .$$
⁽²⁾

b. Substituting $\hat{n}(y_r)$ from 1a above into the fitness function (eq. (3) from ex sheet 6 together with the cost eq. (4)), we find that fitness reads as

$$w(y, y_{\rm r}, x) = y \left(1 - \frac{n_{\rm c} y_{\rm r}}{r} \right) K - \frac{c_0}{2} y^2 .$$
(3)

Differentiating this fitness function according to the given selection gradient (eq. (5) in ex sheet 5), we obtain

$$s(x) = \left(1 - \frac{n_{c}x}{r}\right)K - c_{0}x - R_{2}\frac{n_{c}x}{r}K.$$
(4)

c. Solving for x^* such that $s(x^*) = 0$, we find that the optimal strategy x^* can be written as

$$x^* = x_{\rm MSY} \frac{2Kn_{\rm c}}{c_0 r + Kn_{\rm c}(1+R_2)} , \qquad (5)$$

where

$$x_{\rm MSY} = \frac{1}{n_{\rm c}} \frac{r}{2} \tag{6}$$

is the foraging effort that lead to maximum sustainable yield. Eq. (5) reveals that the optimal strategy x^* decreases with relatedness, R_2 , i.e. individuals evolve to forage less when they do so with relatives. In particular, even in the absence of foraging cost ($c_0 = 0$), individuals avoid over-exploitation when they forage with monozygotic twins (i.e. $x^* = x_{MSY}$ when $R_2 = 1$).

Exercise 2: Risk-sensitive foraging

a. See the table below.

Payoff, π_i	Low condition	High condition
	$f_{ m L}$	$f_{ m H}$
0	0.0	0.0
1	0.9	2.1
2	3.2	3.3

- b. In high condition, the fecundity gain from a payoff of 1 to 2 is less than the loss from a payoff of 1 to 0. Selection should therefore favour to avoid risk in high condition individuals (i.e. $x_{\rm H} \rightarrow 0$). By contrast, the fecundity gain from a payoff of 1 to 2 when in low condition is greater than the loss from a payoff of 1 to 0. Selection should therefore lead individuals in low condition to take risk ($x_{\rm L} \rightarrow 1$).
- c. The predictions made in 2b above are borne out when running individual based simulations (Fig.1).

d. (i) See Fig. 2 Bottom.

(ii) To adapt the code to take into account normally distributed payoffs (Fig. 2 Top), we need to replace the resource function with the following piece of code:

Figure 1: Evolution of the average probabilities of choosing the risk-taking strategy when in low and high condition, $x_{\rm L}$ (in red) and $x_{\rm H}$ (in blue). The population is initially monomorphic for $x_{\rm H} = x_{\rm L} = 0.5$.

Figure 2: The top plot is the probability of receiving a payoff π_i when foraging with a safe strategy (continuous line) or with a risk-taking strategy (dashed line). Parameters suggested in the Exercise Sheet were employed. The bottom figure is the fecundities in high and low conditions, f_H (blue) and f_L (red), as a function of the payoff π_i .