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Microbes and their communities (naturally)
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Microbes provide many services:

• Oxygen production

• Food industry

• Food digestion & vitamin provision

• Nitrogen fixation

• Eliminating plant pests 

• Wastewater treatment

Etc.

Microbes and their communities (naturally)
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What can microbial community design make possible?
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thoughtco.comBreeze Technologies

Could we turn industrial emissions into plastic?
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Verhulst et al (2011) PLoS ONE

Lucas-Barbosa et al (2022) Tr Parasit

Could we make probiotic skin creams to repel mosquitoes?

6
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Why is engineering microbial ecosystems so difficult?

We don’t know enough about how microbes interact!

We don’t know which species are expected to live together or “coexist”

We don’t know how species composition affects community function

7

Lecture outline

Part IA: How do species interact?

Part III: Can we design better communities?

Part IB: Can we predict how interactions change over time and space?

8
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Part IA: How do species interact?
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Defining “interactions”

The effect of one species on the growth and survival of another.

Positive

Negative

10
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Classical view of species 
interactions

Microbial species 
interactions

eats

eats

provides 
food

provides 
protection

poisons

eats 
food 
of

feeds

feeds
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How do microbial species interact?They compete! They cooperate!

12
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How do we find out how microbial species interact?

Too complex!Too simple!

Synthetic microbial communities

13

Machine oils: Metal-working fluids

van der Gast et al (2014) US Patent

No bacteria
High pollution load

With bacteria
Low pollution load

At Ct

OaMs

Agrobacterium 
tumefaciens

Comamonas 
testosteroni

Ochrobactrum 
anthropi

Microbacterium 
saperdae

A model bacterial synthetic community

At Ct

OaMs

At Ct

OaMs

Piccardi et al (2019) PNAS

At Ct

OaMs

Community 
function:
Machine oil 
degradation

Why are all four species needed to degrade machine oil?

14
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At Ct

OaMs

At Ct

OaMs
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?

Agrobacterium 
tumefaciens

Comamonas 
testosteroni

Ochrobactrum 
anthropi

Microbacterium 
saperdae

Interaction:
The effect of one species on the 
growth and survival of another.

Philippe Piccardi

Why are all four species needed to degrade machine oil? 
How do these species interact?
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Why are all four species needed to degrade machine oil? 
How do these species interact?

Compare their population size over time 
when alone versus with a partner
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Piccardi, Vessman & Mitri (2019) PNAS
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Harsh environments promote 
positive interactions (in plants)

Hammarlund & Harcombe (2019) PNAS

Machine oils

Can this explain interactions 
between microbes living in 
harsh machine oils?

Stress Gradient Hypothesis (Bertness & Callaway, 1994)

Björn Vessman

18
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Toxin

Nutrient 

Toxin

Nutrient 

Nutrient Nutrient 

Mono-culture Co-cultureModel: Björn Vessman
Animation: Philippe Piccardi

19

Model equations

Piccardi, Vessman & Mitri (2019) PNAS
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Interactions depend on nutrient 
and toxin concentrations
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Piccardi, Vessman & Mitri (2019) PNAS

Amino acids

In a harsh environment, species that can grow facilitate those that cannot
This is in line with the Stress Gradient Hypothesis (SGH)

Machine oil Machine oil + amino acids

22
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How do microbial species interact?They compete! They cooperate!

It depends!

23

Toxicity favors positive interactions. 

This is because many species cannot grow. 
And when a species cannot grow, it is likely to be facilitated by 

another species that can.

Changing the environment can change interaction sign.

Di Martino*, Picot* & Mitri (2024) PLOS Biol
Piccardi, Vessman & Mitri (2019) PNAS

24



08.09.25

13

Lecture outline

Part IA: How do species interact?

Part III: Can we design better communities?

Part IB: Can we predict how interactions change over time and space?

25

Part II: Can we predict how interactions 
change over time and space?

Oliver Meacock

26
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Classical view of species 
interactions

Microbial species 
interactions

eats

eats

provides 
food

provides 
protection

poisons

eats 
food 
of

feeds

feeds

27

eats

eats

feeds

feeds

Lotka-Volterra

𝛼 𝛽

What mathematical framework is appropriate for microbial interactions?

28
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Consumer-Resource

𝛼 𝛽

𝑟

“sensitivity function”

“impact function”

Lotka-Volterra

𝛼 𝛽

What mathematical framework is appropriate for capturing interactions?

Interaction matrix

29

Interactions depend on nutrient and toxin concentrations

Piccardi, Vessman & Mitri (2019) PNAS
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Can such context-dependency 
be captured by the gLV?

30
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‘Instantaneous interaction’

Consumer-resource
(Closed systems)

Generalised Lotka-Volterra

Population-weighted interaction

Basal growth 
ratePer-capita growth 

rate

Interactions in the gLV framework are an integral

Oliver Meacock

31

Decomposing instantaneous interactions

Meacock & Mitri (2024) Ecol Lett

Effect of species A on 
the distribution of 

resources

Growth rate of A at a 
given concentration of 

resources

Instantaneous 
interaction

32
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33

Meacock & Mitri (2024) Ecol Lett

Applying the framework to predict interactions in the lab

34
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Applying the framework to two more published experiments

1. Batch culture experiments
Daniels et al (2023) ISMEJ

2. Spatial (microfluidic) experiments
Wong et al (2023) PNAS

Analogy to the gLV interaction matrix

Meacock & Mitri (2024) Ecol Lett

35

Interactions are constantly changing over time and space

This framework can predict how interactions will change 
if we know the impact and sensitivity functions

gLV assumes that the environment is at steady-state 
(more appropriate for chemostats)

Picot, Shibasaki et al (2023) Curr Opin Microbiol
Meacock & Mitri (2024) Ecol Lett

36
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Lecture outline

Part IA: How do species interact?

Part III: Can we design better communities?

Part IB: Can we predict how interactions change over time and space?

37

Björn Vessman Pablo GuridiFlora Arias-Sánchez Afra Salazar

Part III: Can we design better communities?

38
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What combination of species gives us the best function?

Machine oils: Metal-working fluids

van der Gast et al (2014) US Patent

No bacteria
High pollution load

With bacteria
Low pollution load

At Ct

OaMs

Agrobacterium 
tumefaciens

Comamonas 
testosteroni

Ochrobactrum 
anthropi

Microbacterium 
saperdae

At Ct
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At Ct

OaMs

At Ct

OaMs

Community 
function:
Machine oil 
degradation

39

12 3

Vessman*, Guridi* et al. (bioRxiv)

Björn Vessman

Pablo Guridi

Flora Arias-Sánchez

Arias-Sánchez et al. (2024) Nature Comm

Swenson et al (2000, 2000), Blouin et al (2015), Panke-Buisse et al 
(2015, 2017), Wright et al (2019), Arora et al (2019), Raynaud et al 
(2019), Jochum et al (2019), Xie et al (2019), Doulcier et al (2020), 

Chang et al (2020, 2021), Mueller et al (2021), Jacquiod et al (2021), 
Fraboul et al (2022)

40
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Swenson et al (2000)

41

What is the problem?

It’s difficult to maintain variability between communities

Ecological dynamics lower heritability

Selection acts at the individual level 
(a microbial community is not an evolutionary individual)

42
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How many evolutionary individuals do you see?

? ?

Evolutionary individuals are the entities that undergo evolution by natural selection as a single unit

Salazar and Mitri (2025)

?

Afra Salazar

43

Can a microbial community be an evolutionary individual?

Salazar and Mitri (2025)

individuality is
Evolutionary individuals are the entities that undergo evolution by natural selection as a single unit

capacity of an entity to
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The classical redistribution step

1 2 3 21

21 3

20

2120

Propagule (PS)
1 2 3 21

3

20

212021

Migrant Pool (MS)
1 2 3 21

1 3

20

20 21

* * *
2

Disassembly (DS)

Cell death
/

Cell activation
(1-f )

Cell replication & mutation
f f

f f~

Degradation
f/

1 2 3 21

Each tube starts with:

At t = 0

x cells
of y species

2000 units of
4 nutrients

700 units of
10 toxins

At each time step t, in each tube At t = 80

Measure degradation
score D:

Total remaining
toxins

1 2 3 21

700

Choose tubes with highest score D and use to create
new communities according to propagation method

One round of selection, repeat for 50 rounds

Next
round
t = 0

1 2 3 21

2 3

20

20 211

No Selection (NS)

A

B Propagation methods

20 20

Prev.
round
t = 80

best

2 2

*

1 2 3 21

21 3

20

2120

Propagule (PS)
1 2 3 21

3

20

212021

Migrant Pool (MS)
1 2 3 21

1 3

20

20 21

* * *
2

Disassembly (DS)

Cell death
/

Cell activation
(1-f )

Cell replication & mutation
f f

f f~

Degradation
f/

1 2 3 21

Each tube starts with:

At t = 0

x cells
of y species

2000 units of
4 nutrients

700 units of
10 toxins

At each time step t, in each tube At t = 80

Measure degradation
score D:

Total remaining
toxins

1 2 3 21

700

Choose tubes with highest score D and use to create
new communities according to propagation method

One round of selection, repeat for 50 rounds

Next
round
t = 0

1 2 3 21

2 3

20

20 211

No Selection (NS)

A

B Propagation methods

20 20

Prev.
round
t = 80

best

2 2

*

It’s difficult to maintain variability between communities
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We came up with a 
redistribution step inspired 

by genetic algorithms
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The more classical ways of redistributing
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Our new method

47

Theoretically, our new method (DS) should select for increased degradation

Vessman*, Guridi* et al. (biorxiv)

Our new 
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Controls

A B

Rounds Rounds
0

100

200

300

400

C
um

ul
at

iv
e 

nu
m

be
r 

of
 c

om
bi

na
tio

ns

Av
er

ag
e

Br
ay

-C
ur

tis
 

be
ta

 d
iv

er
si

ty

DS
PS
MS

PIS
MIS
NS

DR
PR
MR

PIR
MIR

0.0

0.2

0.4

0.6

0.8

0 5040302010 0 5040302010

48



08.09.25

25

Selective media

Designed selective media to separate 11 
species isolated from machine oil

Performed 18 rounds of disassembly 
selection (DS) and disassembly random (DR) 

“Disassembly selection”: disassemble winning communities 
and shuffle their members

Arias-Sánchez et al. (2024) Nature Comm

Björn Vessman

Alice Wallef

Géraldine Alberti

Flora Arias-Sánchez
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Disassembly Selection

Disassembly Random

Score

167 tested communities, ordered by score

Selection favors higher degrading communities ~70% better 
than original 
community

Arias-Sánchez et al. (2024) Nature Comm
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What is the problem?

It’s difficult to maintain variability between communities

Ecological dynamics lower heritability

Selection acts at the individual level 
(a microbial community is not an evolutionary individual)

We were hoping to 
select for increased

cooperation
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Communities were not stable over time (simulated and experimental)

25 further rounds of no-selection 
treatment on the best communities
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Did selected communities have high evolutionary individuality?
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Communities with 
positive interactions 
were favored but did 

not increase their 
positive interactions.

There was some 
compelementarity but 

communities evolved to 
lose their function.

Selected communities 
had low entrenchment. 
When selective pressure 

was removed, community 
function collapsed.

Salazar & Mitri (2025) Curr Opin Micobiol

Afra Salazar
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“Disassembly” 2.0
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Individuality first, selection second

Afra Salazar
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Selection operates at several levels simultaneously 
making it difficult to select at the community level.

We developed a method to improve community function.

We can do even better if communities had higher 
individuality before we applied selection.

Salazar & Mitri (2025) Curr Opin Micobiol

Vessman*, Guridi* et al. (biorxiv)
Arias-Sánchez et al. (2024) Nature Comm
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Could we turn industrial emissions into plastic?
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What I hope you will remember

1. Synthetic microbial communities can be useful model systems

2. Interactions are context-dependent

3. Models help us predict how interactions will change over time and space

4. One can use principles from multi-level selection to engineer microbial communities

5. Eco-evolutionary models can be very useful J

There are still many challenges and open questions ahead! 
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